Supplementary Appendix to "Asymptotic Power of Sphericity Tests for High-dimensional Data"

Alexei Onatski, Marcelo J. Moreira and Marc Hallin*

June 22, 2012

Abstract

This note contains proofs of lemmas $4,5,6,11,12$ and 13 in Onatski, Moreira and Hallin (2011), Asymptotic power of sphericity tests for highdimensional data, where we refer to for definitions and notation.

A Proof of Lemma 4

The original contour \mathcal{K} is such that the singularities $z=\lambda_{1}, \ldots, z=\lambda_{p}$ of the integrand remain inside, whereas the singularity $z=\frac{1+h}{h} S$ remains outside the domain encircled by \mathcal{K}. Sufficient conditions for K to be similarly located with respect to the singularities of the integrand, and for $f(z)$ and $g(z)$ to be well-defined on K are

$$
\begin{equation*}
\min _{h \in(0, \bar{h}]} z_{0}(h)>\max \left\{b_{p}, \lambda_{1}\right\} \tag{A1}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{h \in(0, \bar{h}]} \frac{h}{1+h} \frac{z_{0}(h)}{S}<1 \tag{A2}
\end{equation*}
$$

[^0]Hence, to establish Lemma 4 it is enough to show that (A1) and (A2) hold with probability approaching one as $p, n \rightarrow \infty$ so that $c_{p} \rightarrow c$.

Let us fix a positive ε such that $\varepsilon<(\sqrt{c / \bar{h}}-\sqrt{\bar{h}})^{2}$. Consider the event E that holds if and only if the following four inequalities simultaneously hold:

$$
\begin{align*}
\min _{h \in(0, \bar{h}]}\left(z_{0}(h)-b_{p}\right) & >\varepsilon, \tag{A3}\\
\left|b_{p}-(1+\sqrt{c})^{2}\right| & <\varepsilon / 4, \tag{A4}\\
\left|\lambda_{1}-(1+\sqrt{c})^{2}\right| & <\varepsilon / 4, \tag{A5}\\
\min _{h \in(0, \bar{h}]}\left(\frac{1+h}{h} S-z_{0}(h)\right) & >\varepsilon . \tag{A6}
\end{align*}
$$

Clearly, E implies (A1) and (A2). On the other hand, $\operatorname{Pr}(E) \rightarrow 1$ as $n, p \rightarrow \infty$ so that $c_{p} \rightarrow c$. Indeed, by definition of $z_{0}(h)$ and b_{p},

$$
z_{0}(h)-b_{p}=\left(\sqrt{\frac{c_{p}}{h}}-\sqrt{h}\right)^{2}
$$

Therefore, as $c_{p} \rightarrow c$,

$$
\min _{h \in(0, \bar{h}]}\left(z_{0}(h)-b_{p}\right) \rightarrow \min _{h \in(0, \bar{h}]}\left(\sqrt{\frac{c}{h}}-\sqrt{h}\right)^{2}=\left(\sqrt{\frac{c}{\bar{h}}}-\sqrt{\bar{h}}\right)^{2},
$$

which is larger than ε by assumption. Hence, the probability of (A3) converges to one. Further, $b_{p} \rightarrow(1+\sqrt{c})^{2}$ by definition, while $\lambda_{1} \rightarrow(1+\sqrt{c})^{2}$ almost surely under our null hypothesis, as shown, for example, in Geman (1980). Thus, the probabilities of (A4) and (A5) converge to one too. Finally, by definition of $z_{0}(h)$, $\frac{h}{1+h} z_{0}(h)=h+c_{p}$, so that

$$
\min _{h \in(0, \bar{h}]}\left(\frac{1+h}{h} S-z_{0}(h)\right)=\frac{1+\bar{h}}{\bar{h}}\left(S-\bar{h}-c_{p}\right) .
$$

But under our null hypothesis $S / p \rightarrow 1$ in probability, as $n, p \rightarrow \infty$ so that $c_{p} \rightarrow c$.

This follows, for example, from Theorem 1.1 of Bai and Silverstein (2004). Hence, the probability of (A6) also converges to one. It remains to note that $1-\operatorname{Pr}(E)$ equals the probability of the union of the events complementary to (A3)-(A6).

B Proof of Lemma 5

We have shown, in the proof of Lemma 4, that $\operatorname{Pr}(E) \rightarrow 1$. Therefore, it is sufficient to prove Lemma 5 under the assumption that E holds. Event E implies that $f(z)$ and $g(z)$ are analytic at $z_{0}(h)$ for any $h \in(0, \bar{h}]$. Furthermore, still under E,

$$
\left.f_{1} \equiv \frac{\mathrm{~d}}{\mathrm{~d} z} f(z)\right|_{z=z_{0}(h)}=0 \text { and }\left.f_{2} \equiv \frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} z^{2}} f(z)\right|_{z=z_{0}(h)}<0 .
$$

Indeed, by definition, $z_{0}(h)$ is a critical point of $f(z)$ when $\bar{h}<\sqrt{c_{p}}$. But E implies $\bar{h}<\sqrt{c_{p}}$. Otherwise,

$$
z_{0}(h)-b_{p} \equiv\left(\sqrt{\frac{c_{p}}{h}}-\sqrt{h}\right)^{2}=0<\varepsilon
$$

at $h=\sqrt{C_{p}} \leq \bar{h}$, which contradicts (A3). Further, a direct computation based on (3.3), (3.6), and (3.7) $)^{1}$ shows that

$$
\begin{equation*}
f_{2}=-\frac{1}{4} \frac{h^{2}}{\left(c_{p}-h^{2}\right)(1+h)^{2}}<0 . \tag{A7}
\end{equation*}
$$

First, let us focus on the analysis of $\oint_{K_{1}} e^{-n f(z)} g(z) \mathrm{d} z$. Olver (1997) derives a useful representation for the part of $\oint_{K_{1}} e^{-n f(z)} g(z) \mathrm{d} z$ that corresponds to a portion of K_{1} close to its boundary point, which in our case is $z_{0}(h)$. To make our exposition self-contained, we sketch Olver's derivation; for details, we refer the reader to pages

[^1]121-124 of Olver's book.
Let us introduce new variables v and w by the equations

$$
\begin{equation*}
w^{2}=v=f(z)-f_{0}, \tag{A8}
\end{equation*}
$$

where the branch of w is determined by $\lim \{\arg (w)\}=0$ as $z \rightarrow z_{0}(h)$ along K_{1}, and by continuity elsewhere.

Consider w as a function of z. Since $f_{1}=0$, there exists a small neighborhood of $z_{0}(h)$, where the indicated branch of $w(z)$ is an analytic function. Moreover, there exists a small number $\rho(h)>0$ such that $w(z)$ maps the disk $\left|z-z_{0}(h)\right|<\rho(h)$ conformally on a domain Ω containing $w=0$.

Let $z_{1}(h)$ be a point of K_{1} chosen sufficiently close to $z_{0}(h)$ to insure that the disk $|w| \leq\left|f\left(z_{1}(h)\right)-f_{0}\right|^{1 / 2}$ is contained in Ω. Then the portion $\left[z_{0}, z_{1}\right] \equiv$ [$z_{0}(h), z_{1}(h)$] of contour K_{1} can be deformed, without changing the value of the integral $\oint_{\left[z_{0}, z_{1}\right]} e^{-n f(z)} g(z) \mathrm{d} z$, to make its $w(z)$ map a straight line.

Transformation to the variable v gives

$$
\begin{equation*}
\oint_{\left[z_{0}, z_{1}\right]} e^{-n f(z)} g(z) \mathrm{d} z=e^{-n f_{0}} \oint_{[0, \tau(h)]} e^{-n v} \varphi(v) \mathrm{d} v, \tag{A9}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau(h)=f\left(z_{1}(h)\right)-f_{0}, \varphi(v)=\frac{g(z)}{f^{\prime}(z)}, \tag{A10}
\end{equation*}
$$

and the path for the integral on the right-hand side of (A9) is also a straight line.
For small $|v| \neq 0, \varphi(v)$ has a convergent expansion of the form

$$
\begin{equation*}
\varphi(v)=\sum_{s=0}^{\infty} a_{s} v^{(s-1) / 2} \tag{A11}
\end{equation*}
$$

in which the coefficients a_{s} are related to f_{s} and g_{s}. The formulae for a_{0}, a_{1}, and
a_{2} are given, for example, on p. 86 of Olver (1997). We use them in the statement of Lemma 5 .

Finally, define $\varphi_{k}(v), k=0,1,2, \ldots$ by the relations $\varphi_{k}(0)=a_{k}$ and

$$
\begin{equation*}
\varphi(v)=\sum_{s=0}^{k-1} a_{s} v^{(s-1) / 2}+v^{(k-1) / 2} \varphi_{k}(v) \text { for } v \neq 0 \tag{A12}
\end{equation*}
$$

Then the integral on the right-hand side of (A9) can be rearranged in the form

$$
\begin{equation*}
\oint_{[0, \tau(h)]} e^{-n v} \varphi(v) \mathrm{d} v=\sum_{s=0}^{k-1} \Gamma\left(\frac{s+1}{2}\right) \frac{a_{s}}{n^{(s+1) / 2}}-\varepsilon_{k, 1}(h)+\varepsilon_{k, 2}(h), \tag{A13}
\end{equation*}
$$

where

$$
\begin{align*}
& \varepsilon_{k, 1}(h)=\sum_{s=0}^{k-1} \Gamma\left(\frac{s+1}{2}, \tau(h) n\right) \frac{a_{s}}{n^{(s+1) / 2}} \tag{A14}\\
& \varepsilon_{k, 2}(h)=\oint_{[0, \tau(h)]} e^{-n v} v^{(k-1) / 2} \varphi_{k}(v) \mathrm{d} v, \tag{A15}
\end{align*}
$$

and

$$
\Gamma(\alpha, x)=e^{-x} x^{\alpha} \int_{0}^{\infty} e^{-x t}(1+t)^{\alpha-1} \mathrm{~d} t
$$

is the incomplete Gamma function.
This completes our sketch of Olver's derivation. The remaining part of the proof of Lemma 5 is mostly concerned with two auxiliary lemmas establishing uniform asymptotic properties of $\varepsilon_{k, 1}(h)$ and $\varepsilon_{k, 2}(h)$. The first of these two lemmas provides explicit forms for $\rho(h), z_{1}(h)$, and $\tau(h)$ allowing further analysis of their dependence on h.

Lemma A1. Let $B(\alpha, R)$ and $\bar{B}(\alpha, R)$ denote, respectively, the open and closed balls in the complex plane with center at α and radius R. Further, let $r(h)=\min \left\{z_{0}(h)-\max \left\{b_{p}, \lambda_{1}\right\}, \frac{1+h}{h} S-z_{0}(h)\right\}, \rho(h)=\frac{1}{3 \cdot 2^{4}} r(h), z_{1}(h)=z_{0}(h)+$ $\frac{i}{9 \cdot 2^{6}} r(h)$, and $\tau(h)=f\left(z_{1}(h)\right)-f_{0}$. If event E holds, then,
(i) For any ζ_{1}, ζ_{2} from $\bar{B}\left(z_{0}(h), \rho(h)\right)$, we have $\left|w\left(\zeta_{2}\right)-w\left(\zeta_{1}\right)\right|>\frac{1}{2}\left|f_{2}^{1 / 2}\right|\left|\zeta_{2}-\zeta_{1}\right|$;
(ii) The function $w(z)$ is a one-to-one mapping of $B\left(z_{0}(h), \rho(h)\right)$ on an open set Ω. The inverse function $z(w)$ is analytic in Ω;
(iii) There exist positive constants τ_{1} and τ_{2} such that $\operatorname{Re} \tau(h)>\tau_{1}$ and $\operatorname{Im} \tau(h)<$ τ_{2} for all $h \in(0, \bar{h}] ;$
(iv) $\bar{B}\left(0,2|\tau(h)|^{1 / 2}\right)$ is contained in Ω.

Proof. Throughout this proof, we simplify the notation and write z_{0}, z_{1}, r, ρ, and τ instead of $z_{0}(h), z_{1}(h), r(h), \rho(h)$, and $\tau(h)$, respectively. First, we show that $w(z)$ is analytic in $\bar{B}\left(z_{0}, \rho\right)$ and that $w^{\prime}\left(z_{0}\right)=f_{2}^{1 / 2}$. Let $f^{(j)}(z)$ denote the j-th order derivative of $f(z)$. Consider the Taylor expansion of $f^{(j)}(z)$ at z_{0} :

$$
f^{(j)}(z)=\sum_{s=0}^{k} \frac{1}{s!} f^{(j+s)}\left(z_{0}\right)\left(z-z_{0}\right)^{s}+R_{j, k+1} .
$$

In general, for any $z \in \bar{B}\left(z_{0}, R\right)$, the remainder $R_{j, k+1}$ satisfies

$$
\begin{equation*}
\left|R_{j, k+1}\right| \leq \frac{\left|z-z_{0}\right|^{k+1}}{(k+1)!} \max _{\left|t-z_{0}\right| \leq R}\left|f^{(j+k+1)}(t)\right| \tag{A16}
\end{equation*}
$$

From definition (3.3) of $f(z)$, we have

$$
\begin{equation*}
f^{(s)}(t)=\frac{c_{p}}{2}(-1)^{s-1}(s-1)!\int(t-\lambda)^{-s} \mathrm{~d} \mathcal{F}_{p}(\lambda) \text { for } s \geq 2 \tag{A17}
\end{equation*}
$$

If $t \in B\left(z_{0}, \frac{1}{2} r\right)$, then $|t-\lambda|>\frac{1}{2}\left(z_{0}-\lambda\right)$ for any λ in the support of \mathcal{F}_{p}. Therefore,

$$
|t-\lambda|^{s+1}>\frac{1}{2^{s+1}}\left(z_{0}-\lambda\right)^{s} r
$$

and using (A17) we get

$$
\begin{equation*}
\left|f^{(s+1)}(t)\right|<\frac{s 2^{s+1}}{r}\left|f^{(s)}\left(z_{0}\right)\right| \text { for } s \geq 2 \tag{A18}
\end{equation*}
$$

Combining this with (A16), we obtain for $k+j \geq 2$ and $z \in B\left(z_{0}, \frac{k+1}{k+j} 2^{-k-j-2} r\right)$,

$$
\begin{equation*}
\left|R_{j, k+1}\right| \leq \frac{\left|z-z_{0}\right|^{k}}{2 k!}\left|f^{(k+j)}\left(z_{0}\right)\right| \tag{A19}
\end{equation*}
$$

Further, since

$$
R_{j, k}=\frac{1}{k!} f^{(k+j)}\left(z_{0}\right)\left(z-z_{0}\right)^{k}+R_{j, k+1}
$$

(A19) implies that, for $k+j \geq 2$ and $z \in B\left(z_{0}, \frac{k+1}{k+j} 2^{-k-j-2} r\right)$,

$$
\begin{equation*}
\frac{1}{2 k!}\left|f^{(k+j)}\left(z_{0}\right)\right|\left|z-z_{0}\right|^{k}<\left|R_{j, k}\right|<\frac{3}{2 k!}\left|f^{(k+j)}\left(z_{0}\right)\right|\left|z-z_{0}\right|^{k} \tag{A20}
\end{equation*}
$$

Next, since $f^{(1)}\left(z_{0}\right)=0$, inequalities (A20) imply that

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)\right|=\left|R_{0,2}\right|>\frac{1}{4}\left|f^{(2)}\left(z_{0}\right)\right|\left|z-z_{0}\right|^{2} \equiv \frac{1}{2}\left|f_{2}\right|\left|z-z_{0}\right|^{2} \tag{A21}
\end{equation*}
$$

for any $z \in B\left(z_{0}, \frac{3}{2^{5}} r\right)$. Since $f_{2} \neq 0$, inequality (A21) implies that $f(z)-f\left(z_{0}\right)$ does not have zeros in $B\left(z_{0}, \frac{3}{2^{5}} r\right)$ except a zero of the second order at $z=z_{0}$. Therefore,

$$
\sqrt{\frac{f(z)-f\left(z_{0}\right)}{\left(z-z_{0}\right)^{2}}}=\frac{w(z)}{\left(z-z_{0}\right)}
$$

is analytic inside $B\left(z_{0}, \frac{3}{2^{5}} r\right)$, which includes $\bar{B}\left(z_{0}, \rho\right)$, and converges to $f_{2}^{1 / 2}$ as $z \rightarrow z_{0}$. This implies that $w(z)$ is analytic in $\bar{B}\left(z_{0}, \rho\right)$ and $w^{\prime}\left(z_{0}\right)=f_{2}^{1 / 2}$.

Now, let us show that, for any $z \in \bar{B}\left(z_{0}, \rho\right)$,

$$
\begin{equation*}
\left|w^{\prime}(z)-w^{\prime}\left(z_{0}\right)\right|<\frac{1}{2}\left|w^{\prime}\left(z_{0}\right)\right| \tag{A22}
\end{equation*}
$$

Indeed, since

$$
w^{\prime}(z)=\frac{f^{\prime}(z)}{2 w(z)}=\frac{1}{2}\left(f(z)-f_{0}\right)^{-1 / 2} f^{\prime}(z)
$$

and $w^{\prime}\left(z_{0}\right)=f_{2}^{1 / 2} \neq 0$,

$$
\begin{equation*}
\frac{w^{\prime}(z)}{w^{\prime}\left(z_{0}\right)}=\left(1+\frac{R_{0,3}}{f_{2}\left(z-z_{0}\right)^{2}}\right)^{-\frac{1}{2}}\left(1+\frac{R_{1,2}}{2 f_{2}\left(z-z_{0}\right)}\right) . \tag{A23}
\end{equation*}
$$

Note that for any y_{1} and y_{2} such that $\left|y_{2}\right|<1$,

$$
\begin{equation*}
\left|\frac{1+y_{1}}{\sqrt{1+y_{2}}}-1\right| \leq \frac{\left|y_{1}\right|+\left|y_{2}\right|}{1-\left|y_{2}\right|} \tag{A24}
\end{equation*}
$$

where the principal branch of the square root is used. This follows from the facts that, for $\left|y_{2}\right|<1,\left|\sqrt{1+y_{2}}\right| \geq 1-\left|y_{2}\right|$ and $\left|1+y_{1}-\sqrt{1+y_{2}}\right| \leq\left|y_{1}\right|+\left|y_{2}\right|$. Setting

$$
y_{1}=\frac{R_{1,2}}{2 f_{2}\left(z-z_{0}\right)} \text { and } y_{2}=\frac{R_{0,3}}{f_{2}\left(z-z_{0}\right)^{2}}
$$

and using (A23), (A20) and the fact that, for any $z \in \bar{B}\left(z_{0}, \rho\right)$,

$$
\left|\frac{f^{(3)}\left(z_{0}\right)}{f^{(2)}\left(z_{0}\right)}\right|\left|z-z_{0}\right|<\frac{1}{3},
$$

which follows from (A18), we get

$$
\left|\frac{w^{\prime}(z)}{w^{\prime}\left(z_{0}\right)}-1\right|<\frac{1}{2} .
$$

Hence, (A22) holds.
Finally, let ζ_{1} and ζ_{2} be any two points in $\bar{B}\left(z_{0}, \rho\right)$, and let $\gamma(t)=(1-t) \zeta_{1}+$ $t \zeta_{2}$, where $t \in[0,1]$. We have

$$
\int_{0}^{1}\left(w^{\prime}(\gamma(t))-w^{\prime}\left(z_{0}\right)\right) \mathrm{d} t=\frac{w\left(\zeta_{2}\right)-w\left(\zeta_{1}\right)}{\zeta_{2}-\zeta_{1}}-w^{\prime}\left(z_{0}\right)
$$

Therefore, using (A22), we obtain

$$
\left|\frac{w\left(\zeta_{2}\right)-w\left(\zeta_{1}\right)}{\zeta_{2}-\zeta_{1}}-w^{\prime}\left(z_{0}\right)\right|<\frac{1}{2}\left|w^{\prime}\left(z_{0}\right)\right|
$$

This inequality and the fact that $w^{\prime}\left(z_{0}\right)=f_{2}^{1 / 2}$ imply part (i) of the lemma.
Part (ii) of the lemma is a simple consequence of part (i) and of the analyticity of $w(z)$ in $\bar{B}\left(z_{0}, \rho\right)$, established above. Indeed, by the open mapping theorem, Ω is an open set. Next, by (i), w(z) is one-to-one mapping of $B\left(z_{0}, \rho\right)$ on Ω and has a non-zero derivative in $B\left(z_{0}, \rho\right)$. Further, let $\psi(w)$ be defined on Ω by $\psi(w(z))=z$. Fix $\tilde{w} \in \Omega$. Then $\psi(\tilde{w})=\tilde{z}$ for a unique \tilde{z} in $B\left(z_{0}, \rho\right)$. If $w \in \Omega$ and $\psi(w)=z$, we have

$$
\frac{\psi(w)-\psi(\tilde{w})}{w-\tilde{w}}=\frac{z-\tilde{z}}{w(z)-w(\tilde{z})}
$$

By (i), $w \rightarrow \tilde{w}$ as $z \rightarrow \tilde{z}$, and the latter equality implies $\psi^{\prime}(\tilde{w})=\frac{1}{w^{\prime}(\tilde{z})}$. Therefore, $z(w) \equiv \psi(w)$ is an analytic inverse of $w(z)$ on Ω.

To see that part (iii) holds, note that

$$
\begin{equation*}
\operatorname{Re} \tau=\frac{c_{p}}{2} \int \ln \left|\frac{z_{1}-\lambda}{z_{0}-\lambda}\right| \mathrm{d} \mathcal{F}_{p}(\lambda) \tag{A25}
\end{equation*}
$$

and for any λ such that $0 \leq \lambda<z_{0}$, we have

$$
\left|\frac{z_{1}-\lambda}{z_{0}-\lambda}\right| \geq\left|1+\frac{i}{9 \cdot 2^{6}} \frac{r}{z_{0}}\right| .
$$

When E holds, the latter expression is bounded from below by a fixed constant that is strictly larger than one for all $h \in(0, \bar{h}]$. Therefore, when E holds, (A25) implies that $\operatorname{Re} \tau>\tau_{1}>0$, for all $h \in(0, \bar{h}]$, where τ_{1} is fixed.

Next, by definition of τ, we have

$$
\operatorname{Im} \tau=-\frac{1}{2}\left(\frac{h}{1+h} \frac{r}{9 \cdot 2^{6}}-c_{p} \int \arg \left(\frac{z_{1}-\lambda}{z_{0}-\lambda}\right)\right) \mathrm{d} \mathcal{F}_{p}(\lambda)
$$

But

$$
\frac{h}{1+h} r<\frac{h}{1+h} z_{0} \equiv c_{p}+h
$$

which is smaller than a fixed positive number for all $h \in(0, \bar{h}]$ when E holds. Here the boundedness of h is obvious whereas the boundedness of c_{p} follows from (A4). Further,

$$
\left|\arg \left(\frac{z_{1}-\lambda}{z_{0}-\lambda}\right)\right|<\frac{\pi}{2}
$$

for all $h \in(0, \bar{h}]$ because $\operatorname{Re} \frac{z_{1}-\lambda}{z_{0}-\lambda} \equiv 1$. Hence, there exists τ_{2} such that $|\operatorname{Im} \tau|<\tau_{2}$ for all $h \in(0, \bar{h}]$.

Finally, part (iv) of the lemma can be established as follows. Note that by part (i),

$$
\left|w\left(z_{0}+\rho e^{i \theta}\right)-w\left(z_{0}\right)\right|>\frac{\rho}{2}\left|w^{\prime}\left(z_{0}\right)\right|
$$

for any $\theta \in[0,2 \pi]$. Therefore, for any w_{1} such that $\left|w_{1}-w\left(z_{0}\right)\right| \leq \frac{\rho}{4}\left|w^{\prime}\left(z_{0}\right)\right|$, we have

$$
\min _{\theta}\left|w_{1}-w\left(z_{0}+\rho e^{i \theta}\right)\right|>\frac{\rho}{4}\left|w^{\prime}\left(z_{0}\right)\right| .
$$

By a corollary to the maximum modulus theorem (see Rudin (1987), p.212), the latter inequality implies that the function $w(z)-w_{1}$ has a zero in $B\left(z_{0}, \rho\right)$. Thus, region Ω includes $\bar{B}\left(0, \frac{\rho}{4}\left|w^{\prime}\left(z_{0}\right)\right|\right)$. On the other hand,

$$
2|\tau|^{1 / 2}<\frac{\rho}{4}\left|w^{\prime}\left(z_{0}\right)\right| .
$$

Indeed, consider the identity

$$
\tau=f^{(1)}\left(z_{0}\right)\left(z_{1}-z_{0}\right)+R_{0,2}
$$

Since $f^{(1)}\left(z_{0}\right)=0$, (A20) together with (A7) imply

$$
|\tau|<\frac{3}{2}\left|f_{2}\right|\left|z_{1}-z_{0}\right|^{2}
$$

Since $w^{\prime}\left(z_{0}\right)=f_{2}^{1 / 2}$ and $\left|z_{1}-z_{0}\right|=\frac{1}{9 \cdot 2^{6}} r$, the latter inequality implies that

$$
2|\tau|^{1 / 2}<\frac{\rho}{4}\left|w^{\prime}\left(z_{0}\right)\right| .
$$

Therefore, Ω includes $\bar{B}\left(0,2|\tau|^{1 / 2}\right)$.
Before proceeding with the proof of Lemma 5, we still need one more auxiliary lemma.

Lemma A2. Under the null hypothesis, $\sup _{z \in \Theta_{1}}|g(z)|=O_{p}(1)$ as $n, p \rightarrow \infty$ so that $c_{p} \rightarrow c$, where $\Theta_{1}=\left\{z:\left|\operatorname{Re}(z)-z_{0}(h)\right|<\frac{1}{2} r(h)\right\}$ and $O_{p}(1)$ is uniform over $h \in(0, \bar{h}]$.

Proof. First, consider the case when $g(z)=\exp \left(-\frac{1}{2} \Delta_{p}(z)\right)$, where

$$
\begin{aligned}
\Delta_{p}(z) & \equiv \sum_{j=1}^{p} \ln \left(z-\lambda_{j}\right)-p \int \ln (z-\lambda) \mathrm{d} \mathcal{F}_{p}(\lambda) \\
& =\sum_{j=1}^{p} \ln \left(1-\frac{\lambda_{j}}{z}\right)-p \int \ln \left(1-\frac{\lambda}{z}\right) \mathrm{d} \mathcal{F}_{p}(\lambda) .
\end{aligned}
$$

This statistic $\Delta_{p}(z)$ is a special form of a linear spectral statistic

$$
\Delta_{p}(\varphi) \equiv \sum_{j=1}^{p} \varphi\left(\lambda_{j}\right)-p \int \varphi(\lambda) \mathrm{d} \mathcal{F}_{p}(\lambda)
$$

studied by Bai and Silverstein (2004). According to their Theorem 1.1, if $\varphi(\cdot)$ is analytic on an open set containing interval $\mathcal{I}_{c} \equiv\left[0,(1+\sqrt{c})^{2}\right]$, then the sequence $\left\{\Delta_{p}(\varphi)\right\}$ is tight. That is, for any $\theta>0$ there exists a bound B such that $\operatorname{Pr}\left(\left|\Delta_{p}(\varphi)\right| \leq B\right)>1-\theta$ for every $\Delta_{p}(\varphi)$ from the sequence.

A close inspection of Bai and Silverstein's (2004, pp.562-563) proof of tightness reveals that the bound B can be chosen so that it depends on $\varphi(\cdot)$ only through its supremum over an open area A that includes \mathcal{I}_{c} and where $\varphi(\cdot)$ is analytic. In particular, if we denote by Φ a family of functions $\varphi(x)$, each of which is analytic in the area $A=\left\{x: \sup _{\lambda \in \mathcal{I}_{c}}|x-\lambda|<\varepsilon\right\}$, and if Φ is such that $\sup _{\varphi \in \Phi} \sup _{x \in A}|\varphi(x)|<\infty$, then $\left\{\sup _{\varphi \in \Phi}\left|\Delta_{p}(\varphi)\right|\right\}$ is tight.

Let $\Phi=\left\{\varphi(x) \equiv \ln \left(1-\frac{x}{z}\right): z \in \Theta_{2}\right\}$, where

$$
\Theta_{2}=\left\{z: \operatorname{Re}(z)>(1+\sqrt{c})^{2}+2 \varepsilon\right\}
$$

This family of functions satisfies the above requirements. Indeed,

$$
\sup _{x \in A, z \in \Theta_{2}}\left|\frac{x}{z}\right|=\frac{(1+\sqrt{c})^{2}+\varepsilon}{(1+\sqrt{c})^{2}+2 \varepsilon}<1
$$

so that each of $\varphi(\cdot) \in \Phi$ is analytic in A. Moreover, since by definition

$$
\ln \left(1-\frac{x}{z}\right)=\ln \left|1-\frac{x}{z}\right|+i \arg \left(1-\frac{x}{z}\right),
$$

we have

$$
\sup _{\varphi \in \Phi} \sup _{x \in A}|\varphi(x)|<\ln |1-R|+\frac{\pi}{2}
$$

where

$$
R \equiv \sup _{x \in A, z \in \Theta_{2}}\left|\frac{x}{z}\right|<1
$$

Therefore, $\left\{\sup _{\varphi \in \Phi}\left|\Delta_{p}(\varphi)\right|\right\}$ is tight and $\sup _{z \in \Theta_{2}}|g(z)|=O_{p}(1)$, where $O_{p}(1)$ does
not depend on h.
It remains to note that, as $p, n \rightarrow \infty$ so that $c_{p} \rightarrow c$,

$$
\inf _{h \in(0, \bar{h}]}\left(z_{0}(h)-\frac{1}{2} r(h)\right) \rightarrow \frac{1}{2} \frac{(\bar{h}+1)(c+\bar{h})}{\bar{h}}+\frac{1}{2}(1+\sqrt{c})^{2}>(1+\sqrt{c})^{2}
$$

almost surely. Therefore, for a sufficiently small $\varepsilon, \operatorname{Pr}\left(\Theta_{1} \subseteq \Theta_{2}\right) \rightarrow 1$, and thus, $\sup _{z \in \Theta_{1}}|g(z)|=O_{p}(1)$, where $O_{p}(1)$ is uniform over $h \in(0, \bar{h}]$.

Now, consider the case when

$$
g(z)=\exp \left\{-\frac{n p-p+2}{2} \ln \left(1-\frac{h}{1+h} \frac{z}{S}\right)-\frac{n}{2} \frac{h z}{1+h}-\frac{\Delta_{p}(z)}{2}\right\} .
$$

Since, as has just been shown, $\sup _{z \in \Theta_{1}}\left|\exp \left(-\frac{1}{2} \Delta_{p}(z)\right)\right|=O_{p}(1)$, we only need to prove that $\sup _{z \in \Theta_{1}} \tilde{g}(z)=O_{p}(1)$, where

$$
\tilde{g}(z)=\exp \left\{-\frac{n p-p+2}{2} \operatorname{Re} \ln \left(1-\frac{h}{1+h} \frac{z}{S}\right)-\frac{n}{2} \frac{h \operatorname{Re} z}{1+h}\right\}
$$

We have

$$
\operatorname{Re} \ln \left(1-\frac{h}{1+h} \frac{z}{S}\right)=\ln \left|1-\frac{h}{1+h} \frac{z}{S}\right|>\ln \left(1-\frac{h}{1+h} \frac{\operatorname{Re} z}{S}\right) .
$$

Note that (A6) and the definition of Θ_{1} imply that

$$
\frac{h}{1+h} \frac{\operatorname{Re} z}{S}<1
$$

for any $z \in \Theta_{1}$. In general, for any real x such that $0<x<1$, we have

$$
\ln (1-x)>-\frac{x}{1-x}
$$

Therefore, for any $z \in \Theta_{1}$,

$$
\ln \left(1-\frac{h}{1+h} \frac{\operatorname{Re} z}{S}\right)>-\left(S-\frac{h \operatorname{Re} z}{1+h}\right)^{-1} \frac{h \operatorname{Re} z}{1+h}
$$

and we can write

$$
\begin{equation*}
\ln \tilde{g}(z)<\frac{p}{2 c_{p}} \frac{h \operatorname{Re} z}{1+h}\left[\left(p-c_{p}+\frac{2}{n}\right)\left(S-\frac{h \operatorname{Re} z}{1+h}\right)^{-1}-1\right] \tag{A26}
\end{equation*}
$$

From the definition of Θ_{1},

$$
\left|\frac{h \operatorname{Re} z}{1+h}\right|<\frac{h}{1+h}\left(\frac{1}{2} r(h)+z_{0}(h)\right)<\frac{3}{2} \frac{h z_{0}(h)}{1+h}=\frac{3}{2}\left(h+c_{p}\right) .
$$

Further, $S-p \equiv \lambda_{1}+\ldots+\lambda_{p}-p=O_{p}(1)$ by Theorem 1.1 of Bai and Silverstein (2004). Combining these facts with (A26), we get $\sup _{z \in \Theta_{1}} \tilde{g}(z)=O_{p}(1)$ uniformly over $h \in(0, \bar{h}]$

Let us return to the proof of Lemma 5. Consider $\varphi(v) w$ as a function of w. According to (A8) and (A11), $\varphi(v) w$ has a convergent series representation

$$
\begin{equation*}
\varphi(v) w=\sum_{s=0}^{\infty} a_{s} w^{s} \tag{A27}
\end{equation*}
$$

for sufficiently small $|w|$. Let us show that the series in (A27) converges for all $w \in \Omega$. Indeed, from (A10), we see that

$$
\begin{equation*}
\varphi(v) w=\left(2 w^{\prime}(z)\right)^{-1} g(z) \tag{A28}
\end{equation*}
$$

By Lemma A1 (ii), z, viewed as the inverse of $w(z)$, is analytic in Ω. Further, $g(z)$
and $w^{\prime}(z)$ are analytic in $z(\Omega) \equiv B\left(z_{0}(h), \rho(h)\right)$. Finally,

$$
\begin{equation*}
\left|w^{\prime}(z)\right|>\frac{1}{2}\left|f_{2}^{1 / 2}\right| \tag{A29}
\end{equation*}
$$

for $z \in \bar{B}\left(z_{0}(h), \rho(h)\right)$ by Lemma A1 (i), and $f_{2}^{1 / 2} \neq 0$ for $h \in(0, \bar{h}]$. Therefore, $\varphi(v) w$ must be analytic in Ω and the series (A27) must converge there.

Now, formula (A7) implies that $\inf _{h \in(0, \bar{h}]}\left\{\left|f_{2}^{1 / 2}\right| / h\right\}>0$. Therefore, from Lemma A2 and (A29), we have

$$
\begin{equation*}
\sup _{w \in \Omega}|\varphi(v) w| \equiv \sup _{z \in \bar{B}\left(z_{0}(h), \rho(h)\right)}\left|\frac{g(z)}{2 w^{\prime}(z)}\right|=h^{-1} O_{p}(1) \tag{A30}
\end{equation*}
$$

where $O_{p}(1)$ is uniform in $h \in(0, \bar{h}]$.
By Lemma A1 (iii) and (iv), $|\tau(h)|>|\operatorname{Re} \tau(h)|>\tau_{1}$ and $B\left(0,\left|\tau_{1}\right|^{1 / 2}\right)$ is contained in Ω, where $\varphi(v) w$ is analytic. Using Cauchy's estimates for the derivatives of an analytic function (see Theorem 10.26 in Rudin (1987)), (A27) and (A30), we get

$$
\begin{equation*}
\left|a_{s}\right| \leq\left|\tau_{1}\right|^{-s / 2} \sup _{w \in B\left(0,\left|\tau_{1}\right|^{1 / 2}\right)}|\varphi(v) w|=h^{-1} O_{p}(1) . \tag{A31}
\end{equation*}
$$

Next, Olver (1997, ch. 4, pp.109-110) shows that $\Gamma(\alpha, \zeta)=O\left(e^{-\zeta} \zeta^{\alpha-1}\right)$ as $|\zeta| \rightarrow \infty$, uniformly in the sector $|\arg (\zeta)| \leq \frac{\pi}{2}-\delta$ for an arbitrary positive δ. Let us take $\alpha=\frac{s+1}{2}$ and $\zeta=\tau(h) n$. Lemma A1 (iii) shows that

$$
|\tau(h) n|>\tau_{1} n \rightarrow \infty
$$

and

$$
|\arg (\tau(h) n)|=\left|\arctan \frac{\operatorname{Im} \tau(h)}{\operatorname{Re} \tau(h)}\right|<\arctan \frac{\tau_{2}}{\tau_{1}}<\frac{\pi}{2}
$$

uniformly over $h \in(0, \bar{h}]$. Therefore,

$$
\begin{equation*}
\Gamma\left(\frac{s+1}{2}, \tau(h) n\right)=O\left(e^{-\tau(h) n}(\tau(h) n)^{\frac{s-1}{2}}\right)=O_{p}\left(e^{-\frac{1}{2} \tau_{1} n}\right) \tag{A32}
\end{equation*}
$$

for any integer s, uniformly over $h \in(0, \bar{h}]$.
Equality (A32), the definition (A14) of $\varepsilon_{k, 1}(h)$, and inequality (A31) imply that

$$
\begin{equation*}
\varepsilon_{k, 1}(h)=h^{-1} O_{p}\left(e^{-\frac{1}{2} \tau_{1} n}\right), \tag{A33}
\end{equation*}
$$

where $O_{p}(\cdot)$ is uniform over $h \in(0, \bar{h}]$.
Next, consider $w^{k} \varphi_{k}(v)$ as a function of w. Since, by definition,

$$
w^{k} \varphi_{k}(v)=\varphi(v) w-\sum_{s=0}^{k-1} a_{s} w^{s}
$$

it can be interpreted as a remainder in the Taylor expansion of $\varphi(v) w$. As explained above, such an expansion is valid in Ω, which includes the ball $B\left(0,2|\tau(h)|^{1 / 2}\right)$ by Lemma A1 (iv). By a general formula for remainders in Taylor expansions, for any $w \in B\left(0,|\tau(h)|^{1 / 2}\right)$,

$$
\begin{equation*}
\left|w^{k} \varphi_{k}(v)\right| \leq \frac{|w|^{k}}{k!} \max _{w \in B\left(0,|\tau(h)|^{1 / 2}\right)}\left|\frac{d^{k}}{d w^{k}}(w \varphi(v))\right| . \tag{A34}
\end{equation*}
$$

Further, for any $w \in B\left(0,|\tau(h)|^{1 / 2}\right)$, a ball with radius $\left|\tau_{1}\right|^{1 / 2}$ centered in w is contained in the ball $B\left(0,2|\tau(h)|^{1 / 2}\right) \subset \Omega$. Therefore, using (A30) and Cauchy's estimates for the derivatives of an analytic function (see Theorem 10.26 in Rudin (1987)), we get

$$
\begin{equation*}
\max _{w \in B\left(0,|\tau(h)|^{1 / 2}\right)}\left|\frac{d^{k}}{d w^{k}}(w \varphi(v))\right| \leq k!\left|\tau_{1}\right|^{-k / 2} \sup _{w \in \Omega}|w \varphi(v)|=h^{-1} O_{p}(1) \tag{A35}
\end{equation*}
$$

Combining (A34) and (A35), we have

$$
\sup _{v \in(0, \tau(h)]}\left|\varphi_{k}(v)\right|=h^{-1} O_{p}(1)
$$

This equality together with (A31) and the fact that, by definition, $\varphi_{k}(0)=a_{k}$ imply that

$$
\begin{equation*}
\max _{v \in[0, \tau(h)]}\left|\varphi_{k}(v)\right|=h^{-1} O_{p}(1), \tag{A36}
\end{equation*}
$$

where $O_{p}(1)$ is uniform in $h \in(0, \bar{h}]$.
For $\varepsilon_{k, 2}(h)$, the substitution of variable $v=\tau(h) \frac{x}{n}$ in the integral (A15) yields

$$
\varepsilon_{k, 2}(h)=n^{-(k+1) / 2} \int_{0}^{n} e^{-\tau(h) x} x^{\frac{k-1}{2}} \tau(h)^{\frac{k+1}{2}} \varphi_{k}(v) \mathrm{d} x .
$$

Therefore,

$$
\begin{align*}
\left|\varepsilon_{k, 2}(h) n^{(k+1) / 2}\right| & <\max _{v \in[0, \tau(h)]}\left|\varphi_{k}(v)\right| \int_{0}^{n} e^{-\operatorname{Re} \tau(h) x} x^{\frac{k-1}{2}}|\tau(h)|^{\frac{k+1}{2}} \mathrm{~d} x \tag{A37}\\
& <\max _{v \in[0, \tau(h)]}\left|\varphi_{k}(v)\right| \int_{0}^{\infty} e^{-\frac{\operatorname{Re} \tau(h)}{|\tau(h)|} y} y^{\frac{k-1}{2}} \mathrm{~d} y
\end{align*}
$$

But by Lemma A1 (iii),

$$
\frac{\operatorname{Re} \tau(h)}{|\tau(h)|}>\frac{\operatorname{Re} \tau(h)}{|\operatorname{Re} \tau(h)|+|\operatorname{Im} \tau(h)|}>\frac{\tau_{1}}{\tau_{1}+\tau_{2}}
$$

for all $h \in(0, \bar{h}]$. Therefore, the integral in (A37) is bounded uniformly over $h \in(0, \bar{h}]$. Using (A36), we conclude that

$$
\begin{equation*}
\varepsilon_{k, 2}(h)=h^{-1} O_{p}\left(n^{-(k+1) / 2}\right) . \tag{A38}
\end{equation*}
$$

Combining (A9), (A13), (A33), and (A38), we get

$$
\begin{equation*}
\oint_{\left[z_{0}, z_{1}\right]} e^{-n f(z)} g(z) \mathrm{d} z=e^{-n f_{0}}\left(\sum_{s=0}^{k-1} \Gamma\left(\frac{s+1}{2}\right) \frac{a_{s}}{n^{(s+1) / 2}}+\frac{O_{p}(1)}{h n^{(k+1) / 2}}\right) \tag{A39}
\end{equation*}
$$

where $O_{p}(1)$ is uniform in $h \in(0, \bar{h}]$.
Let us now consider the contribution of $K_{+} \backslash\left[z_{0}, z_{1}\right]$, that is, the part of contour K_{+}excluding the segment $\left[z_{0}, z_{1}\right]$, to the contour integral $\oint_{K_{+}} e^{-n f(z)} g(z) \mathrm{d} z$. On K_{1},

$$
\operatorname{Re}\left(f(z)-f_{0}\right)=\frac{c_{p}}{2} \int \ln \left|1+i \frac{\operatorname{Im} z}{z_{0}(h)-\lambda}\right| \mathrm{d} \mathcal{F}_{p}(\lambda)
$$

is an increasing function of $\operatorname{Im}(z)$. Hence, on $K_{1} \backslash\left[z_{0}, z_{1}\right]$,

$$
\operatorname{Re}\left(f(z)-f_{0}\right)>\operatorname{Re} \tau \geq \tau_{1}
$$

Therefore,

$$
\begin{align*}
\left|\oint_{K_{1} \backslash\left[z_{0}, z_{1}\right]} e^{-n f(z)} g(z) \mathrm{d} z\right| & \leq e^{-n f_{0}} e^{-n \tau_{1}} \oint_{K_{1} \backslash\left[z_{0}, z_{1}\right]}|g(z) \mathrm{d} z| \\
& =e^{-n f_{0}} e^{-n \tau_{1}}\left|3 z_{0}(h)\right| O_{p}(1) \\
& =e^{-n f_{0}} e^{-n \tau_{1}} h^{-1} O_{p}(1) . \tag{A40}
\end{align*}
$$

For the horizontal part K_{2} of K_{+}, consider first the case when $g(z)=\exp \left\{-\frac{1}{2} \Delta_{p}(z)\right\}$. We have

$$
\begin{align*}
\left|\oint_{K_{2}} e^{-n f(z)} g(z) d z\right| & =\left|\oint_{K_{2}} e^{\frac{n}{2} \frac{h}{1+h} z} \prod_{j=1}^{p}\left(z-\lambda_{j}\right)^{-\frac{1}{2}} \mathrm{~d} z\right| \leq e^{-\frac{p}{2} \ln \left(3 z_{0}(h)\right)} \oint_{K_{2}}\left|e^{\frac{n}{2} \frac{h}{1+h} z} \mathrm{~d} z\right| \\
& =\left(\frac{n}{2} \frac{h}{1+h}\right)^{-1} e^{-\frac{n}{2}\left(c_{p} \ln \left(3 z_{0}(h)\right)-\frac{h}{1+h} z_{0}(h)\right)} . \tag{A41}
\end{align*}
$$

But $\frac{h}{1+h} z_{0}(h) \equiv h+c_{p}$, so that

$$
c_{p} \ln \left(3 z_{0}(h)\right)-\frac{h}{1+h} z_{0}(h)>c_{p} \ln \left(z_{0}(h)\right)-h>2 f_{0}+c_{p}
$$

Combining such a lower bound with (A41), we get

$$
\begin{equation*}
\left|\oint_{K_{2}} e^{-n f(z)} g(z) \mathrm{d} z\right|=e^{-n f_{0}} h^{-1} O\left(e^{-\frac{n}{2} c_{p}}\right)=e^{-n f_{0}} h^{-1} O_{p}\left(e^{-\frac{n}{4} c}\right), \tag{A42}
\end{equation*}
$$

where $O_{p}\left(e^{-\frac{n}{4} c}\right)$ does not depend on h.
For the case when

$$
g(z)=\exp \left\{-\frac{n p-p+2}{2} \ln \left(1-\frac{h}{1+h} \frac{z}{S}\right)-\frac{n}{2} \frac{h z}{1+h}-\frac{\Delta_{p}(z)}{2}\right\}
$$

we have

$$
\begin{aligned}
\left|\oint_{K_{2}} e^{-n f(z)} g(z) \mathrm{d} z\right| & =\left|\oint_{K_{2}}\left(1-\frac{h}{1+h} \frac{z}{S}\right)^{-\frac{n p-p+2}{2}} \prod_{j=1}^{p}\left(z-\lambda_{j}\right)^{-\frac{1}{2}} \mathrm{~d} z\right| \\
& \leq e^{-\frac{p}{2} \ln \left(3 z_{0}(h)\right)} \oint_{K_{2}}\left|\left(1-\frac{h}{1+h} \frac{z}{S}\right)^{-\frac{n p-p+2}{2}} \mathrm{~d} z\right|
\end{aligned}
$$

Further,

$$
\begin{aligned}
\oint_{K_{2}}\left|\left(1-\frac{h}{1+h} \frac{z}{S}\right)^{-\frac{n p-p+2}{2}} \mathrm{~d} z\right| & \leq \int_{-\infty}^{z_{0}(h)}\left(1-\frac{h}{1+h} \frac{x}{S}\right)^{-\frac{n p-p+2}{2}} \mathrm{~d} x \\
& =\frac{2 S}{n p-p} \frac{1+h}{h}\left(1-\frac{h}{1+h} \frac{z_{0}(h)}{S}\right)^{-\frac{n p}{2}+\frac{p}{2}}
\end{aligned}
$$

Hence, we can write

$$
\begin{equation*}
\left|\oint_{K_{2}} e^{-n f(z)} g(z) \mathrm{d} z\right| \leq \frac{2 S}{n p-p} \frac{1+h}{h} e^{-\frac{n p-p}{2} \ln \left(1-\frac{h}{1+h} \frac{z_{0}(h)}{S}\right)-\frac{p}{2} \ln \left(3 z_{0}(h)\right)} . \tag{A43}
\end{equation*}
$$

Now, for any real x such that $0<x<1$, we have $\ln (1-x)>-\frac{x}{1-x}$. Hence,

$$
-\frac{n p-p}{2} \ln \left(1-\frac{h}{1+h} \frac{z_{0}(h)}{S}\right)<\left(p-c_{p}\right)\left(S-\frac{h z_{0}(h)}{1+h}\right)^{-1} \frac{n}{2} \frac{h z_{0}(h)}{1+h} .
$$

But

$$
\left(p-c_{p}\right)\left(S-\frac{h z_{0}(h)}{1+h}\right)^{-1}=1+O_{p}\left(n^{-1}\right)
$$

The $O_{p}\left(n^{-1}\right)$ quantity here is uniform over $h \in(0, \bar{h}]$ in view of the facts that $S-p=O_{p}(1)$ by Theorem 1.1 of Bai and Silverstein (2004),

$$
\left|\frac{h z_{0}(h)}{1+h}\right|=\left|h+c_{p}\right| \leq\left|\bar{h}+c_{p}\right|
$$

for all $h \in(0, \bar{h}]$, and n and p diverge to infinity at the same rate. Therefore, (A43) implies

$$
\begin{equation*}
\left|\oint_{K_{2}} e^{-n f(z)} g(z) \mathrm{d} z\right|=\left(\frac{n}{2} \frac{h}{1+h}\right)^{-1} e^{-\frac{n}{2}\left(c_{p} \ln \left(3 z_{0}(h)\right)-\frac{h}{1+h} z_{0}(h)\right)} O_{p}(1), \tag{A44}
\end{equation*}
$$

which, similarly to (A41), implies (A42).
Combining (A39), (A40), and (A42), we get

$$
\begin{equation*}
\oint_{K_{+}} e^{-n f(z)} g(z) \mathrm{d} z=e^{-n f_{0}}\left(\sum_{s=0}^{k-1} \Gamma\left(\frac{s+1}{\mu}\right) \frac{a_{s}}{n^{(s+1) / 2}}+\frac{O_{p}(1)}{h n^{(k+1) / 2}}\right) . \tag{A45}
\end{equation*}
$$

Finally, note that

$$
\oint_{K} e^{-n f(z)} g(z) \mathrm{d} z=\oint_{K_{+}} e^{-n f(z)} g(z) \mathrm{d} z-\oint_{\tilde{K}_{-}} e^{-n f(z)} g(z) \mathrm{d} z
$$

where \tilde{K}_{-}is a contour that coincides with K_{-}but has the opposite orientation. As explained in Olver (1997, pp.121-122), a_{s} with odd s in the asymptotic expansion for $\oint_{\tilde{K}_{-}} e^{-n f(z)} g(z) \mathrm{d} z$ coincides with the corresponding a_{s} in the asymptotic expansion for $\oint_{K_{+}} e^{-n f(z)} g(z) \mathrm{d} z$. However, a_{s} with even s in the two expansions differ by the sign. Therefore, coefficients a_{s} with odd s cancel out, but those with even s double in the difference of the two expansions. Setting $k=2 m$, we have

$$
\oint_{K} e^{-n f(z)} g(z) \mathrm{d} z=2 e^{-n f_{0}}\left(\sum_{s=0}^{m-1} \Gamma\left(s+\frac{1}{2}\right) \frac{a_{2 s}}{n^{s+1 / 2}}+\frac{O_{p}(1)}{h n^{m+1 / 2}}\right)
$$

which establishes Lemma 5.

C Proof of Lemma 6

Fix $0<\varepsilon<(\sqrt{c / \tilde{h}}-\sqrt{\tilde{h}})^{2}$, and consider the event E_{1} that holds if and only if (A4) and (A5) hold,

$$
z_{0}(\tilde{h})-b_{p}>\varepsilon
$$

and

$$
\min _{h \in[\tilde{h}, \infty)}\left(\frac{1+h}{h} S-z_{0}(\tilde{h})\right)>\varepsilon .
$$

The fact that, with probability approaching 1 , for all $h \in[\tilde{h}, \infty)$, the integrals in (2.9) and (2.10) do not change as \mathcal{K} is deformed into $K(\tilde{h})$ can be established along the same lines as in the proof of Lemma 4 by replacing event E with event E_{1}.

Similarly, an equivalent, for $h \geq \tilde{h}$, of Lemma 2 A , is easily proved along the same steps. Hence, since $\operatorname{Re}\left(f(z)-f\left(z_{0}(\tilde{h})\right)\right)$ is an increasing function of $\operatorname{Im} z$
on $K_{1}(\tilde{h})$,

$$
\begin{align*}
\left|\oint_{K_{1}(\tilde{h})} e^{-n f(z)} g(z) \mathrm{d} z\right| & \leq e^{-n f\left(z_{0}(\tilde{h})\right)} \oint_{K_{1}(\tilde{h})}|g(z) \mathrm{d} z| \\
& =e^{-n f\left(z_{0}(\tilde{h})\right)} O_{p}(1) . \tag{A46}
\end{align*}
$$

Further, as in (A41) and (A44), we have

$$
\begin{align*}
\left|\oint_{K_{2}(\tilde{h})} e^{-n f(z)} g(z) \mathrm{d} z\right| & =\left(\frac{n}{2} \frac{h}{1+h}\right)^{-1} e^{-\frac{n}{2}\left(c_{p} \ln \left(3 z_{0}(\tilde{h})\right)-\frac{h}{1+h} z_{0}(\tilde{h})\right)} O_{p}(1) \\
& =e^{-n f\left(z_{0}(\tilde{h})\right)} O_{p}(1) \tag{A47}
\end{align*}
$$

Combining (A46) and (A47), we get

$$
\left|\oint_{K_{+}(\tilde{h})} e^{-n f(z)} g(z) \mathrm{d} z\right|=e^{-n f\left(z_{0}(\tilde{h})\right)} O_{p}(1) .
$$

Similarly,

$$
\left|\oint_{K_{-}(\tilde{h})} e^{-n f(z)} g(z) \mathrm{d} z\right|=e^{-n f\left(z_{0}(\tilde{h})\right)} O_{p}(1)
$$

Lemma 6 follows from the latter two equalities.

D Proof of Lemma 11

Consider

$$
I(h) \equiv \int_{a_{p}}^{b_{p}} \ln \left(z_{0}(h)-\lambda\right) \psi_{p}(\lambda) \mathrm{d} \lambda,
$$

where $\psi_{p}(\lambda)$ is defined in (3.2). Making the substitution $\lambda=1+c_{p}-2 \sqrt{c_{p}} \cos \theta$ and replacing $z_{0}(h)$ by the right-hand side of (3.7), we get

$$
\begin{aligned}
I(h) & =\frac{2}{\pi} \int_{0}^{\pi} \frac{\ln \left(h+h^{-1} c_{p}+2 \sqrt{c_{p}} \cos \theta\right) \sin ^{2} \theta}{1+c_{p}-2 \sqrt{c_{p}} \cos \theta} \mathrm{~d} \theta \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} \frac{\ln \left|\sqrt{c_{p} / h}+\sqrt{h} e^{i \theta}\right|^{2} \sin ^{2} \theta}{1+c_{p}-2 \sqrt{c_{p}} \cos \theta} \mathrm{~d} \theta
\end{aligned}
$$

Further, changing the variable of integration from θ to $z=e^{i \theta}$, we get

$$
\begin{equation*}
I(h)=\frac{-1}{2 \pi i} \oint_{|z|=1} \frac{\ln \left[\left(\sqrt{c_{p} / h}+\sqrt{h} z\right)\left(\sqrt{c_{p} / h}+\sqrt{h} z^{-1}\right)\right]\left(z-z^{-1}\right)^{2}}{2\left(\sqrt{c_{p}}-z\right)\left(z \sqrt{c_{p}}-1\right)} \mathrm{d} z . \tag{A48}
\end{equation*}
$$

Representing the logarithm of a product as a sum of logarithms, splitting the integral into two parts corresponding to the summands, and changing the variable of integration in the second integral from z to z^{-1}, we get

$$
\begin{equation*}
I(h)=\frac{-1}{2 \pi i} \oint_{|z|=1} \frac{\ln \left(\sqrt{c_{p} / h}+\sqrt{h} z\right)\left(z-z^{-1}\right)^{2}}{\left(\sqrt{c_{p}}-z\right)\left(z \sqrt{c_{p}}-1\right)} \mathrm{d} z . \tag{A49}
\end{equation*}
$$

If $h<\sqrt{c_{p}}$, then function $\ln \left(\sqrt{c_{p} / h}+\sqrt{h} z\right)$ is analytic inside the ball $|z| \leq 1$. Therefore, if $c_{p}<1$, the integrand in (A49) has singularities only at zero and $\sqrt{c_{p}}$. If $c_{p}>1$, the singularities are at zero and $\sqrt{1 / c_{p}}$. If $c_{p}=1$, the only singularity is at zero. Computing the residues of the integrand at the singularity points and using Cauchy's theorem, we get

$$
I(h)=\left\{\begin{array}{cl}
\frac{c_{p}-1}{c_{p}} \ln (1+h)+\frac{h}{c_{p}}+\ln \frac{c_{p}}{h} & \text { if } h<\sqrt{c_{p}} \text { and } c_{p}<1 \tag{A50}\\
\frac{1-c_{p}}{c_{p}} \ln \left(1+\frac{h}{c_{p}}\right)+\frac{h}{c_{p}}+\frac{1}{c_{p}} \ln \frac{c_{p}}{h} & \text { if } h<\sqrt{c_{p}} \text { and } c_{p} \geq 1
\end{array} .\right.
$$

If $h>\sqrt{c_{p}}$, then represent the logarithm in (A48) in the form

$$
\ln \left[\left(z \sqrt{c_{p} / h}+\sqrt{h}\right)\left(z^{-1} \sqrt{c_{p} / h}+\sqrt{h}\right)\right]
$$

and proceed as above to get

$$
I(h)=\left\{\begin{array}{cl}
\frac{c_{p}-1}{c_{p}} \ln \left(h+c_{p}\right)+\frac{1}{h}+\frac{1}{c_{p}} \ln h & \text { if } h>\sqrt{c_{p}} \text { and } c_{p}<1 \tag{A51}\\
\frac{1-c_{p}}{c_{p}} \ln (1+h)+\frac{1}{h}+\ln h & \text { if } h>\sqrt{c_{p}} \text { and } c_{p} \geq 1
\end{array} .\right.
$$

Now, it is straightforward to verify that Lemma 11 follows from (A50), (A51), and from the facts that

$$
f_{0}=-\frac{1}{2}\left(\frac{h}{1+h} z_{0}(h)-c_{p} \int \ln \left(z_{0}(h)-\lambda\right) \mathrm{d} \mathcal{F}_{p}(\lambda)\right)
$$

that $\frac{h}{1+h} z_{0}(h)=h+c_{p}$, and that the Marchenko-Pastur distribution has mass $\max \left(0,1-c_{p}^{-1}\right)$ at zero.

E Proof of Lemma 12

Let $z_{0 j}=\lim z_{0}\left(h_{j}\right)$ as $n, p \rightarrow \infty$. As follows from Bai and Silverstein (2004, p. 563),

$$
\Delta_{p}\left(z_{0}\left(h_{j}\right)\right)=\oint_{\mathcal{C}} \ln \left(z_{0}\left(h_{j}\right)-z\right) M_{p}(z) \mathrm{d} z
$$

and

$$
\Delta_{p}\left(z_{0 j}\right)=\oint_{\mathcal{C}} \ln \left(z_{0 j}-z\right) M_{p}(z) \mathrm{d} z
$$

where \mathcal{C} is a fixed contour of integration encircling the support of the MarchenkoPastur distribution, but not $z_{0}\left(h_{j}\right)$ and $z_{0 j}$, and

$$
M_{p}(z)=\sum_{j=1}^{p}\left(\lambda_{j}-z\right)^{-1}-p \int(x-z)^{-1} \mathrm{~d} \mathcal{F}_{p}(x)
$$

Therefore,

$$
\Delta_{p}\left(z_{0}\left(h_{j}\right)\right)-\Delta_{p}\left(z_{0 j}\right)=\oint_{\mathcal{C}} \ln \left(\frac{z_{0}\left(h_{j}\right)-z}{z_{0 j}-z}\right) M_{p}(z) \mathrm{d} z
$$

Further, as can be shown using arguments similar to those given on p. 563 of Bai and Silverstein (2004),

$$
\oint_{\mathcal{C}} \ln \left(\frac{z_{0}\left(h_{j}\right)-z}{z_{0 j}-z}\right) M_{p}(z) \mathrm{d} z=\oint_{\mathcal{C}} \ln \left(\frac{z_{0}\left(h_{j}\right)-z}{z_{0 j}-z}\right) \hat{M}_{p}(z) \mathrm{d} z+o_{p}(1),
$$

where $\left\{\hat{M}_{p}(z), p=1,2, \ldots\right\}$ is a tight sequence of random continuous functions on \mathcal{C}. On the other hand, as $n, p \rightarrow \infty$,

$$
\ln \left(\frac{z_{0}\left(h_{j}\right)-z}{z_{0 j}-z}\right) \rightarrow 0
$$

uniformly over \mathcal{C}. Hence,

$$
\oint_{\mathcal{C}} \ln \left(\frac{z_{0}\left(h_{j}\right)-z}{z_{0 j}-z}\right) \hat{M}_{p}(z) \mathrm{d} z=o_{p}(1)
$$

and thus

$$
\Delta_{p}\left(z_{0}\left(h_{j}\right)\right)-\Delta_{p}\left(z_{0 j}\right)=o_{p}(1) .
$$

The latter equality implies that the vectors $\left(S-p, \Delta_{p}\left(z_{0}\left(h_{1}\right)\right), \ldots, \Delta_{p}\left(z_{0}\left(h_{r}\right)\right)\right)$ and $\left(S-p, \Delta_{p}\left(z_{01}\right), \ldots, \Delta_{p}\left(z_{0 r}\right)\right)$ simultaneously diverge, or converge, in distribution,
to the same limit.
Now, according to Theorem 1.1 of Bai and Silverstein (2004), $\left(S-p, \Delta_{p}\left(z_{01}\right), \ldots\right.$, $\left.\Delta_{p}\left(z_{0 r}\right)\right)$ converges in distribution to a Gaussian vector $\left(\eta, \xi_{1}, \ldots, \xi_{r}\right)$ with means $\mathrm{E} \eta=$ 0,

$$
\begin{equation*}
\mathrm{E} \xi_{j}=-\frac{1}{2 \pi i} \oint \ln \left(z_{0 j}-z\right) \frac{c \underline{m}^{3}(z)}{(1+\underline{m}(z))^{3}-c \underline{m}^{2}(z)(1+\underline{m}(z))} \mathrm{d} z \tag{A52}
\end{equation*}
$$

covariances

$$
\begin{align*}
& \operatorname{Cov}\left(\xi_{j}, \xi_{k}\right)=-\frac{1}{2 \pi^{2}} \oint \oint \frac{\ln \left(z_{0 j}-z_{1}\right) \ln \left(z_{0 k}-z_{2}\right)}{\left(\underline{m}\left(z_{1}\right)-\underline{m}\left(z_{2}\right)\right)^{2}} \frac{\mathrm{~d} \underline{m}\left(z_{1}\right)}{\mathrm{d} z_{1}} \frac{\mathrm{~d} \underline{m}\left(z_{2}\right)}{\mathrm{d} z_{2}} \mathrm{~d} z_{1} \mathrm{~d} z_{2}, \\
& \operatorname{Cov}\left(\xi_{j}, \eta\right)=-\frac{1}{2 \pi^{2}} \oint \oint \frac{z_{2} \ln \left(z_{0 j}-z_{1}\right)}{\left(\underline{m}\left(z_{1}\right)-\underline{m}\left(z_{2}\right)\right)^{2}} \frac{\mathrm{~d} \underline{m}\left(z_{1}\right)}{\mathrm{d} z_{1}} \frac{\mathrm{~d} \underline{m}\left(z_{2}\right)}{\mathrm{d} z_{2}} \mathrm{~d} z_{1} \mathrm{~d} z_{2}, \tag{A53}
\end{align*}
$$

and variance

$$
\begin{equation*}
\operatorname{Var}(\eta)=-\frac{1}{2 \pi^{2}} \oint \oint \frac{z_{1} z_{2}}{\left(\underline{m}\left(z_{1}\right)-\underline{m}\left(z_{2}\right)\right)^{2}} \frac{\mathrm{~d} \underline{m}\left(z_{1}\right)}{\mathrm{d} z_{1}} \frac{\mathrm{~d} \underline{m}\left(z_{2}\right)}{\mathrm{d} z_{2}} \mathrm{~d} z_{1} \mathrm{~d} z_{2} \tag{A55}
\end{equation*}
$$

where

$$
\underline{m}(z)=-(1-c) z^{-1}+c m(z)
$$

with $m(z)$ given by (3.6) where c_{p} is replaced by c. That is,

$$
\begin{equation*}
\underline{m}(z)=\frac{-z+c-1+\sqrt{(z-c-1)^{2}-4 c}}{2 z} \tag{A56}
\end{equation*}
$$

where the branch of the square root is chosen so that the real and the imaginary parts of $\sqrt{(z-c-1)^{2}-4 c}$ have the same signs as the real and the imaginary parts of $z-c-1$, respectively. The contours of integration in (A52)-(A55) are closed, oriented counterclockwise, enclose zero and the support of the Marchenko-Pastur distribution with parameter c, and do not enclose $z_{0 j}$ and $z_{0 k}$.

The expressions for $\mathrm{E} \xi_{j}, \operatorname{Cov}\left(\xi_{j}, \xi_{k}\right), \operatorname{Cov}\left(\xi_{j}, \eta\right)$ and $\operatorname{Var}(\eta)$ can be simplified along the same steps as in Bai and Silverstein (2004, pp.596-599). Exactly following the derivation of their formula 5.13 , we get

$$
\begin{equation*}
\mathrm{E} \xi_{j}=\frac{\ln \left(\left(z_{0 j}-a\right)\left(z_{0 j}-b\right)\right)}{4}-\frac{1}{2 \pi} \int_{a}^{b} \frac{\ln \left(z_{0 j}-x\right)}{\sqrt{4 c-(x-c-1)^{2}}} \mathrm{~d} x \tag{A57}
\end{equation*}
$$

where $a=(1-\sqrt{c})^{2}$ and $b=(1+\sqrt{c})^{2}$.
Making substitution $x=1+c-2 \sqrt{c} \cos \theta$ as in the above proof of Lemma 11, and using similar steps to those used in that proof, we obtain

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{a}^{b} \frac{\ln \left(z_{0 j}-x\right)}{\sqrt{4 c-(x-c-1)^{2}}} \mathrm{~d} x=\frac{1}{2 \pi} \int_{0}^{\pi} \ln \left|\sqrt{c / h_{j}}+\sqrt{h_{j}} e^{i \theta}\right|^{2} \mathrm{~d} \theta \\
= & \frac{1}{2 \pi i} \int_{|z|=1} z^{-1} \ln \left(\sqrt{c / h_{j}}+\sqrt{h_{j}} z\right) \mathrm{d} z=\ln \sqrt{c / h_{j}} .
\end{aligned}
$$

Using this in (A57), we get

$$
\begin{aligned}
\mathrm{E} \xi_{j} & =\frac{1}{4} \ln \left(\left(\sqrt{c / h_{j}}+\sqrt{h_{j}}\right)^{2}\left(\sqrt{c / h_{j}}-\sqrt{h_{j}}\right)^{2}\right)-\ln \sqrt{c / h_{j}} \\
& =\frac{1}{2} \ln \left(1-c^{-1} h_{j}^{2}\right)
\end{aligned}
$$

For the covariance $\operatorname{Cov}\left(\xi_{j}, \xi_{k}\right)$ we use formula 1.16 of Bai and Silverstein (2004), to get

$$
\begin{equation*}
\operatorname{Cov}\left(\xi_{j}, \xi_{k}\right)=-\frac{1}{2 \pi^{2}} \oint \oint \frac{\ln \left(z_{0 j}-z\left(m_{1}\right)\right) \ln \left(z_{0 k}-z\left(m_{2}\right)\right)}{\left(m_{1}-m_{2}\right)^{2}} \mathrm{~d} m_{1} \mathrm{~d} m_{2} \tag{A58}
\end{equation*}
$$

where

$$
\begin{equation*}
z(m)=-\frac{1}{m}+\frac{c}{1+m} \tag{A59}
\end{equation*}
$$

Note that substituting $\underline{m}(z)$ as defined in (A56) in the right-hand side of (A59),
we get z, so (A59) describes a function inverse to $\underline{m}(z)$.
Let us split the double integral in (A58) into three parts according to the decomposition

$$
\operatorname{Cov}\left(\xi_{j}, \xi_{k}\right)=\frac{1}{2}\left[\operatorname{Var}\left(\xi_{j}\right)+\operatorname{Var}\left(\xi_{k}\right)-\operatorname{Var}\left(\xi_{j}-\xi_{k}\right)\right]
$$

where

$$
\begin{align*}
& \operatorname{Var}\left(\xi_{j}\right)=-\frac{1}{2 \pi^{2}} \oint \oint \frac{\ln \left(z_{0 j}-z\left(m_{1}\right)\right) \ln \left(z_{0 j}-z\left(m_{2}\right)\right)}{\left(m_{1}-m_{2}\right)^{2}} \mathrm{~d} m_{1} \mathrm{~d} m_{2}, \tag{A60}\\
& \operatorname{Var}\left(\xi_{k}\right)=-\frac{1}{2 \pi^{2}} \oint \oint \frac{\ln \left(z_{0 k}-z\left(m_{1}\right)\right) \ln \left(z_{0 k}-z\left(m_{2}\right)\right)}{\left(m_{1}-m_{2}\right)^{2}} \mathrm{~d} m_{1} \mathrm{~d} m_{2}, \tag{A61}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(\xi_{j}-\xi_{k}\right)=-\frac{1}{2 \pi^{2}} \oint \oint \frac{\ln \left(\frac{z_{0 j}-z\left(m_{1}\right)}{z_{0 k}-z\left(m_{1}\right)}\right) \ln \left(\frac{z_{0 j}-z\left(m_{2}\right)}{z_{0 k}-z\left(m_{2}\right)}\right)}{\left(m_{1}-m_{2}\right)^{2}} \mathrm{~d} m_{1} \mathrm{~d} m_{2} \tag{A62}
\end{equation*}
$$

The contours of integration over m_{1} and m_{2} in (A60-A62) are obtained from the contours of integration over z_{1} and z_{2} in (A53) by transformation $\underline{m}(z)$. Recall that by assumption the contours over z_{1} and z_{2} intersect the real line to the left of zero and in between the upper boundary of the support of the Marchenko-Pastur distribution, $(1+\sqrt{c})^{2}$, and $\min \left\{z_{0 j}, z_{0 k}\right\}$. Therefore, as can be shown using the definition (A56) of $\underline{m}(z)$, the m_{1}-contour and m_{2}-contour are clockwise oriented and intersect the real line in between $-(1+\sqrt{c})^{-1}$ and $\min \left\{\underline{m}\left(z_{0 j}\right), \underline{m}\left(z_{0 k}\right)\right\}=$ $-\max \left\{h_{j}\left(h_{j}+c\right)^{-1}, h_{k}\left(h_{k}+c\right)^{-1}\right\}$ and to the right of zero. In particular, both contours enclose $0,-h_{j}\left(h_{j}+c\right)^{-1}$ and $-h_{k}\left(h_{k}+c\right)^{-1}$, but not $-1,-\left(1+h_{j}\right)^{-1}$ and $-\left(1+h_{k}\right)^{-1}$.

Without loss of generality, assume that the m_{2}-contour encloses the m_{1}-contour.

For fixed m_{2}, we have

$$
\begin{array}{r}
\oint \frac{\ln \left(z_{0 j}-z\left(m_{1}\right)\right)}{\left(m_{1}-m_{2}\right)^{2}} \mathrm{~d} m_{1}=\oint \frac{-\frac{\mathrm{d}}{\mathrm{~d} m_{1}} z\left(m_{1}\right)}{\left(z_{0 j}-z\left(m_{1}\right)\right)\left(m_{1}-m_{2}\right)} \mathrm{d} m_{1} \\
=-\oint \frac{1 / m_{1}^{2}-c /\left(m_{1}+1\right)^{2}}{\left(z_{0 j}+1 / m_{1}-c /\left(m_{1}+1\right)\right)\left(m_{1}-m_{2}\right)} \mathrm{d} m_{1} \tag{A63}
\end{array}
$$

where the first equality follows from integration by parts and the fact that $\ln \left(z_{0 j}-z\left(m_{1}\right)\right)$ is a single-valued function along the m_{1}-contour. To see this, note that

$$
\ln \left(z_{0 j}-z\left(m_{1}\right)\right)=\ln \frac{z_{0 j}\left(m_{1}+\left(1+h_{j}\right)^{-1}\right)}{m_{1}+1}+\ln \left(m_{1}+\frac{h_{j}}{h_{j}+c}\right)-\ln m_{1}
$$

The first of the latter three terms is a single-valued function along the m_{1}-contour because it does not have singularities inside the contour. The second and the third terms are not single-valued, but their changes after passing once along the contour cancel each other.

Now, the integrand in (A63) has first-order poles at $0,-h_{j}\left(h_{j}+c\right)^{-1}, m_{2},-1$ and at $-\left(1+h_{j}\right)^{-1}$ and no other singularities. As explained above, only the first two of the above poles are enclosed by the m_{1}-contour. Using Cauchy's residue theorem, we get

$$
\begin{equation*}
\oint \frac{\ln \left(z_{0 j}-z\left(m_{1}\right)\right)}{\left(m_{1}-m_{2}\right)^{2}} \mathrm{~d} m_{1}=2 \pi i\left(-\frac{1}{m_{2}}+\frac{1}{m_{2}+h_{j}\left(h_{j}+c\right)^{-1}}\right) . \tag{A64}
\end{equation*}
$$

Let us denote $-h_{j}\left(h_{j}+c\right)^{-1}$ as θ_{j}. Using (A64) and (A60), we get

$$
\begin{aligned}
\operatorname{Var}\left(\xi_{j}\right)= & \frac{2 \pi i}{2 \pi^{2}} \oint \ln \left(z_{0 j}-z\left(m_{2}\right)\right)\left(\frac{1}{m_{2}}-\frac{1}{m_{2}-\theta_{j}}\right) \mathrm{d} m_{2} \\
= & \frac{2 \pi i}{2 \pi^{2}} \oint \ln \left(1-z_{0 j}^{-1} z\left(m_{2}\right)\right)\left(\frac{1}{m_{2}}-\frac{1}{m_{2}-\theta_{j}}\right) \mathrm{d} m_{2} \\
= & \frac{2 \pi i}{2 \pi^{2}} \oint \ln \left(\frac{m_{2}+\left(1+h_{j}\right)^{-1}}{m_{2}+1}\right)\left(\frac{1}{m_{2}}-\frac{1}{m_{2}-\theta_{j}}\right) \mathrm{d} m_{2} \\
& -\frac{2 \pi i}{2 \pi^{2}} \oint \ln \left(\frac{m_{2}-\theta_{j}}{m_{2}}\right)\left(\frac{1}{m_{2}}-\frac{1}{m_{2}-\theta_{j}}\right) \mathrm{d} m_{2} .
\end{aligned}
$$

By Cauchy's residue theorem, the first term in the latter expression is equal to $-2 \ln \left(1-c^{-1} h_{j}^{2}\right)$. The second term equals zero because the integrand has antiderivative $-\frac{1}{2}\left[\ln \left(\frac{m_{2}-\theta_{j}}{m_{2}}\right)\right]^{2}$ which is a single-valued function along the contour.

Similarly, we can show that

$$
\operatorname{Var}\left(\xi_{k}\right)=-2 \ln \left(1-c^{-1} h_{k}^{2}\right)
$$

and that

$$
\operatorname{Var}\left(\xi_{j}-\xi_{k}\right)=2 \ln \frac{\left(1-c^{-1} h_{j} h_{k}\right)^{2}}{\left(1-c^{-1} h_{j}^{2}\right)\left(1-c^{-1} h_{k}^{2}\right)}
$$

Combining these results, we get

$$
\begin{aligned}
\operatorname{Cov}\left(\xi_{j}, \xi_{k}\right)= & -\ln \left(1-c^{-1} h_{j}^{2}\right)-\ln \left(1-c^{-1} h_{k}^{2}\right) \\
& -\ln \frac{\left(1-c^{-1} h_{j} h_{k}\right)^{2}}{\left(1-c^{-1} h_{j}^{2}\right)\left(1-c^{-1} h_{k}^{2}\right)} \\
= & -2 \ln \left(1-c^{-1} h_{j} h_{k}\right) .
\end{aligned}
$$

For $\operatorname{Cov}\left(\xi_{j}, \eta\right)$ and $\operatorname{Var}(\eta)$, an analysis similar to but simpler than that leading to the above formula for $\operatorname{Cov}\left(\xi_{j}, \xi_{k}\right)$ shows that $\operatorname{Cov}\left(\xi_{j}, \eta\right)=-2 h_{j}$ and $\operatorname{Var}(\eta)=$ $2 c$.

F Proof of Lemma 13

First, note that

$$
C L R=\sum_{j=1}^{p} q\left(\lambda_{j}\right)-p \int q(x) \mathrm{d} \mathcal{F}_{p}(x)
$$

where $q(x)=x-\ln x-1$. Also, recall that, as shown in the proof of Lemma 12,

$$
\Delta_{p}\left(z_{0}(h)\right)=\Delta_{p}\left(z_{0}\right)+o_{p}(1),
$$

where $z_{0}=\lim z_{0}(h)$ and

$$
\Delta_{p}\left(z_{0}\right)=\sum_{j=1}^{p} s\left(\lambda_{j}\right)-p \int s(x) \mathrm{d} \mathcal{F}_{p}(x)
$$

with $s(x)=\ln \left(z_{0}-x\right)$. Therefore, in view of Theorem 1.1 of Bai and Silverstein (2004), $C L R$ and $\Delta_{p}\left(z_{0}(h)\right)$ jointly converge in distribution to a Gaussian vector with covariance

$$
\begin{equation*}
R=-\frac{1}{2 \pi^{2}} \oint \oint \frac{s\left(z_{1}\right) q\left(z_{2}\right)}{\left(\underline{m}\left(z_{1}\right)-\underline{m}\left(z_{2}\right)\right)^{2}} \frac{\mathrm{~d} \underline{m}\left(z_{1}\right)}{\mathrm{d} z_{1}} \frac{\mathrm{~d} \underline{m}\left(z_{2}\right)}{\mathrm{d} z_{2}} \mathrm{~d} z_{1} \mathrm{~d} z_{2} . \tag{A65}
\end{equation*}
$$

Here $\underline{m}(z)$ is as defined in (A56), and the contours of integration are closed, oriented counterclockwise, enclose the support of the Marchenko-Pastur distribution with parameter $c<1$, and do not enclose z_{0}. Further, we will choose such contours so that the z_{1}-contour encloses 0 , but the z_{2}-contour does not.

Using Formula 1.16 of Bai and Silverstein (2004) we can simplify (A65) to get

$$
R=-\frac{1}{2 \pi^{2}} \oint \oint \frac{\ln \left(z_{0}-z\left(m_{1}\right)\right)\left(z\left(m_{2}\right)-\ln z\left(m_{2}\right)-1\right)}{\left(m_{1}-m_{2}\right)^{2}} \mathrm{~d} m_{1} \mathrm{~d} m_{2}
$$

where

$$
z(m)=-\frac{1}{m}+\frac{c}{1+m}
$$

and the contours of integration over m_{1} and m_{2} are obtained from the contours of integration over z_{1} and z_{2} in (A65) by the transformation $\underline{m}(z)$. In particular, m_{1}-contour is oriented clockwise and encloses $-\frac{h}{h+c}$ and 0 but not -1 and $-\frac{1}{1+h}$, whereas m_{2}-contour is oriented counterclockwise and encloses $\frac{1}{c-1}$ and -1 but not $-\frac{h}{h+c}$ and 0 .

Using (A64), we can write $R=R_{1}+R_{2}+R_{3}$, where

$$
\begin{aligned}
R_{1} & =-\frac{i}{\pi} \oint\left(-\frac{1}{m_{2}}+\frac{1}{m_{2}+h_{j}\left(h_{j}+c\right)^{-1}}\right) z\left(m_{2}\right) \mathrm{d} m_{2} \\
R_{2} & =\frac{i}{\pi} \oint\left(-\frac{1}{m_{2}}+\frac{1}{m_{2}+h_{j}\left(h_{j}+c\right)^{-1}}\right) \ln z\left(m_{2}\right) \mathrm{d} m_{2}, \text { and } \\
R_{3} & =\frac{i}{\pi} \oint\left(-\frac{1}{m_{2}}+\frac{1}{m_{2}+h_{j}\left(h_{j}+c\right)^{-1}}\right) \mathrm{d} m_{2} .
\end{aligned}
$$

Since $-\frac{1}{m_{2}}+\frac{1}{m_{2}+h_{j}\left(h_{j}+c\right)^{-1}}$ is analytic in the area enclosed by the m_{2}-contour, $R_{3}=0$. Further, using Cauchy's theorem and the fact that

$$
z\left(m_{2}\right)=-\frac{1}{m_{2}}+\frac{c}{1+m_{2}},
$$

we get $R_{1}=-2 h$. Finally, integrating R_{2} by parts, and using the fact that $\ln z\left(m_{2}\right)$ is a single-valued function on the m_{2}-contour, we get

$$
R_{2}=-\frac{i}{\pi} \oint \frac{\frac{1}{m_{2}^{2}}-\frac{c}{\left(1+m_{2}\right)^{2}}}{-\frac{1}{m_{2}}+\frac{c}{m_{2}+1}}\left(-\ln m_{2}+\ln \left(m_{2}+h_{j}\left(h_{j}+c\right)^{-1}\right)\right) \mathrm{d} m_{2} .
$$

The integrand in the above integral has only two singularities in the area enclosed by the m_{2}-contour: a pole at $\frac{1}{c-1}$ and a pole at -1 . Therefore, by Cauchy's residue theorem, we get $R_{2}=2 \ln (1+h)$. To summarize, $R=R_{1}+R_{2}+R_{3}=-2 h+$ $2 \ln (1+h)$, which establishes Lemma 13.

References

[1] Bai, Z.D. and J.W. Silverstein (2004) "CLT for Linear Spectral Statistics of Large-Dimensional Sample Covariance Matrices", Annals of Probability 32, 553-605.
[2] Geman, S. (1980) "A limit theorem for the norm of random matrices", Annals of Probability 8, 252-261.
[3] Olver, F.W.J. (1997) Asymptotics and Special Functions, A K Peters, Natick, Massachusetts.
[4] Rudin, W. (1987) Real and Complex Analysis, 3rd edition, McGraw-Hill, New York.

[^0]: *Alexei Onatski: University of Cambridge, ao319@cam.ac.uk. Marcelo J. Moreira: FGV/EPGE, mjmoreira@fgv.br. Marc Hallin: Université libre de Bruxelles and Princeton University, mhallin@ulb.ac.be.

[^1]: ${ }^{1}$ Here and throughout this Supplement, numerical references are for equations in the main text.

