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Abstract
This note contains proofs of lemmas 4, 5, 6, 11, 12 and 13 in Onatski,
Moreira and Hallin (2011), Asymptotic power of sphericity tests for highdi-

mensional data, where we refer to for definitions and notation.

A Proof of Lemma 4

The original contour K is such that the singularities = = Ay,...,z = A, of the
integrand remain inside, whereas the singularity z = %S remains outside the
domain encircled by K. Sufficient conditions for K to be similarly located with

respect to the singularities of the integrand, and for f(z) and g(z) to be well-defined

on K are
min_zo(h) > max {b,, A1 } (A1)
he(o,ﬁ]
and
h Zg(h)
max < 1. A2
ne(on) L+h S (42)
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Hence, to establish Lemma 4 it is enough to show that (A1) and (A2) hold with
probability approaching one as p,n — oo so that ¢, — c.
_ N\ 2

Let us fix a positive € such that ¢ < <\/C/ h — \/ﬁ> . Consider the event E

that holds if and only if the following four inequalities simultaneously hold:

minhe( ]( o(h) —b,) > e, (A3)

2) < ¢/4, (A4)

)Al 1+\[2) < e/4, (A5)

min (o (#S—zo(h)) > e (A6)

Clearly, E implies (A1) and (A2). On the other hand, Pr (F) — 1 as n,p — o0 so

that ¢, — c. Indeed, by definition of zy(h) and by,

zo(h)—bp:< %—\/5)2.

Therefore, as ¢, — c,

i 0= i ([ i) = (V)

which is larger than ¢ by assumption. Hence, the probability of (A3) converges to
one. Further, b, — (14 +/c)” by definition, while \; — (14 /¢)” almost surely
under our null hypothesis, as shown, for example, in Geman (1980). Thus, the
probabilities of (A4) and (A5) converge to one too. Finally, by definition of zy(h),

HLhzo(h) = h + ¢, so that

: 1+h 1+h _
miny, ¢ (g 7] (TS - zo(h)) = (S=h—cp).

But under our null hypothesis S/p — 1 in probability, as n, p — oo so that ¢, — c.



This follows, for example, from Theorem 1.1 of Bai and Silverstein (2004). Hence,
the probability of (A6) also converges to one. It remains to note that 1 — Pr(E)

equals the probability of the union of the events complementary to (A3)-(A6).

B Proof of Lemma 5

We have shown, in the proof of Lemma 4, that Pr(E) — 1. Therefore, it is
sufficient to prove Lemma 5 under the assumption that E holds. Event E implies
that f(z) and g(z) are analytic at zo(h) for any h € (0,h]. Furthermore, still

under F,

d 1 d?

fi= @f(zﬂz:m(h) =0and f; = §@f(2)|z=zo(h) <0.

Indeed, by definition, zo(h) is a critical point of f(z) when h < /G- But E implies
h < /G- Otherwise,
E 2
2(h) — b, = ( —p—\/E> —0<e¢
at h = /¢, < h, which contradicts (A3). Further, a direct computation based on
(3.3), (3.6), and (3.7)! shows that

1w
i S arn <" (A7)

First, let us focus on the analysis of fKI e ) g(2)dz. Olver (1997) derives a
useful representation for the part of le e "(?)g(z)dz that corresponds to a portion
of K close to its boundary point, which in our case is zy(h). To make our exposition

self-contained, we sketch Olver’s derivation; for details, we refer the reader to pages

'Here and throughout this Supplement, numerical references are for equations in the main
text.



121-124 of Olver’s book.

Let us introduce new variables v and w by the equations

w?=v=f(2) = fo, (A8)

where the branch of w is determined by lim {arg (w)} = 0 as z — z9(h) along K,
and by continuity elsewhere.

Consider w as a function of z. Since f; = 0, there exists a small neighborhood of
2o(h), where the indicated branch of w(z) is an analytic function. Moreover, there
exists a small number p(h) > 0 such that w(z) maps the disk |z — z(h)| < p(h)
conformally on a domain ) containing w = 0.

Let z;(h) be a point of K; chosen sufficiently close to zy(h) to insure that
the disk |w| < |f(z1(h)) — fo|"/? is contained in Q. Then the portion [zo,21] =
[20(h), z1(h)] of contour K; can be deformed, without changing the value of the
integral Lgf[zwl] e () g(2)dz, to make its w(z) map a straight line.

Transformation to the variable v gives

7{ e B g(2)dz = e ™o ]{ e "p(v)do, (A9)

[20:21] [0,7(h)]

where

i) = £ ()~ fo (o) = 2% (A10)

and the path for the integral on the right-hand side of (A9) is also a straight line.

For small |v| # 0, ¢(v) has a convergent expansion of the form

o(v) = Zasv(sfl)/zj (A1)
s=0

in which the coefficients a, are related to fs and g,. The formulae for ag, a;, and



ay are given, for example, on p.86 of Olver (1997). We use them in the statement
of Lemma 5.
Finally, define ¢, (v), k =0, 1,2, ... by the relations ¢, (0) = a; and
k—1
o(v) = Z asw V2 4 pE=D20 (1) for v # 0. (A12)
s=0

Then the integral on the right-hand side of (A9) can be rearranged in the form

k-1

- s+1 s
§ooemon = () St ), (A1
[0,7(R)] s=0 n
where
k—1
s+1 Qg
k1 (h) = ZOF( 9 ,T(h)n) W, (A14)
cra(h) = f ey k-D/20 (1) do, (A15)
[0,7(m)]
and

I'(a,z) = ex:z:“/ e " (1 + t)a_l dt
0

is the incomplete Gamma function.

This completes our sketch of Olver’s derivation. The remaining part of the
proof of Lemma 5 is mostly concerned with two auxiliary lemmas establishing
uniform asymptotic properties of €41 (h) and €y 2 (h) . The first of these two lemmas
provides explicit forms for p(h), z1(h), and 7(h) allowing further analysis of their

dependence on h.

LEMMA Al. Let B(a,R) and B (a, R) denote, respectively, the open and
closed balls in the complex plane with center at « and radius R. Further, let
r(h) = min {z(h) — max {b,, \1}, 225 — z(h) }, p(h) = 5527 (h), z1(h) = z(h) +
5557 (h), and T(h) = f(z1(h)) — fo. If event E holds, then,
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1/2

(i) Forany ¢y, Cy from B (z0(h), p(h)), we have [w (Co) —w (¢1)| > 5 | 27| 12 —

(ii) The function w(z) is a one-to-one mapping of B (z9(h), p(h)) on an open set

Q. The inverse function z(w) is analytic in §);

(iii) There exist positive constants T and T such that Re7(h) > 71 and Im 7 (h) <

7o for all h € (0,/_1};

(iv) B <0,2 |T(h)|1/2> is contained in S

ProOOF. Throughout this proof, we simplify the notation and write 2y, 21, 7,
p, and 7 instead of z9(h), z1(h), 7(h), p(h), and 7(h), respectively. First, we show
that w(z) is analytic in B (2o, p) and that w' (zg) = 1/2 Let fY9(2) denote the

j-th order derivative of f(z). Consider the Taylor expansion of fU)(z) at 2 :
“1
Z Qf UF) (20) (2 = 20)" + Ry
s=0

In general, for any z € B (2, R), the remainder R, satisfies

IR | < [ max | fOHD (1)] (A16)
At = (k+1)! = z0|<R )
From definition (3.3) of f(z), we have
FO@) =21y s — 1) [ (t= M) dF, (\) for s> 2. A17
9 p

IfteB (zo, %r), then [t — \| > % (20 — A) for any A in the support of F,,. Therefore,

it — A > —\)°r,

9s+1 (ZO



and using (A17) we get

£ ()] < =

(s) (20)| for s > 2. (A18)

Combining this with (A16), we obtain for k+j > 2 and z € B (zo, 21;2 k—j— 2r>,

Ryl < 2200 000 () (A19)

Further, since

Rjy = k,f(kﬂ (20) (2 — 20)" + Rjgt1,

(A19) implies that, for k+j > 2 and z € B ( o, kil2 k—j— 27,),

1 ,
— D ()| |2 = 20]" < | Ryl < 5

SHl |f ki) (20) | |z — zo| (A20)

2k!

Next, since f) () = 0, inequalities (A20) imply that

|f(2) = f(20)| = [Roz| > ~ ! |f(2 (20)| |12 — 20|* = = |f2| |2 — 2| (A21)

for any z € B (zo, % 7") Since fy # 0, inequality (A21) implies that f(z) — f(20)
does not have zeros in B (zo, 2%7’) except a zero of the second order at z = z.

Therefore,

f(z) = () _ w(z)

(z — 20)2 (2 — 20)

is analytic inside B (zo, 2%7“), which includes B (zg, p), and converges to f21/ ? as
2 — z. This implies that w (2) is analytic in B (2, p) and w' (29) = 21/2.

Now, let us show that, for any z € B (2, p),

0! (2) — ' (20)] < 3 [ (z0)] (A22)



Indeed, since

/ . I (z) o 1 ~1/2 p1
W@ =E B Lo
and w' (zo) = 21/2 # 0,
w' (z) Ro3 -3 Rio
v pey) (i) e

Note that for any y; and y, such that |ys| < 1,

V1I+yo 1 —|ya] ’

where the principal branch of the square root is used. This follows from the facts

that, for |yo| < 1, |vIT+ 42| > 1—|y2] and |1+ y1 — VI + 42| < [1]+ |y2| . Setting

= Ry and yy — Ro3
2f2 (2 — 20) fo(z = 2)°

and using (A23), (A20) and the fact that, for any z € B (2, p),

f(3) (20)

1@ (20)

|Z—Zo| < 5,

which follows from (A18), we get

Hence, (A22) holds.
Finally, let ¢, and (, be any two points in B (2, p), and let v(t) = (1 —t) {; +
t(y, where t € [0,1]. We have

' / —w (z _w(C2>_w(Cl)_w/ P
/0 (0 (3(0)) = )t = L= (20).




Therefore, using (A22), we obtain

w(C2)_w(Cl)_w/Z lw’z
e ()| < 51’ (z0)] .

This inequality and the fact that w’ (z9) = f21 /2 imply part (i) of the lemma.

Part (ii) of the lemma is a simple consequence of part (i) and of the analyticity
of w(z) in B(zo, p), established above. Indeed, by the open mapping theorem, € is
an open set. Next, by (i), w(z) is one-to-one mapping of B(zp, p) on € and has a
non-zero derivative in B(zg, p). Further, let ¢ (w) be defined on Q by ¢ (w (z)) = z.

Fix @ € . Then ¢ (w) = Z for a unique Z in B(zg, p). If w € Q and ¥ (w) = z, we

have
b(w) - @) =
w— W w(z) —w(2)
By (i), w — w as z — Z, and the latter equality implies ¢ (0) = w,l(g). Therefore,

z(w) = 1 (w) is an analytic inverse of w(z) on €.

To see that part (iii) holds, note that

S i’ dF, (\), (A25)

Cp

ReT:E In

20 —
and for any A such that 0 < A\ < zg, we have

1T
9'262’0

Zl—)\
Zo—)\

i

When E holds, the latter expression is bounded from below by a fixed constant
that is strictly larger than one for all h € (0, l_L} . Therefore, when E holds, (A25)

implies that Re7 > 71 > 0, for all h € (0, B], where 7 is fixed.



Next, by definition of 7, we have
1 h r 21— A
I =—|— — dF, (A).
T 2(1+h9-26 Cp/arg<zo—A)> Fr ()

h - h
1+h S11n°0

But

=c,+h,

which is smaller than a fixed positive number for all h € (0, B} when £ holds. Here

the boundedness of h is obvious whereas the boundedness of ¢, follows from (A4).

. 21— A <7T
'8 Zo—)\ 2

forall h € (0, B] because Re ;1)—::\\ = 1. Hence, there exists 79 such that [Im 7| < 79

Further,

for all h € (0, ﬁ} )
Finally, part (iv) of the lemma can be established as follows. Note that by
part (i),

|w (20 + pe’®) — w (20)| > g ' ()]

for any 0 € [0, 27]. Therefore, for any w; such that |w; — w(zo)| < £ |w’ (20)], we
have

mein lwi — w (20 + pe)| > g |w' (20)] -

By a corollary to the maximum modulus theorem (see Rudin (1987), p.212), the
latter inequality implies that the function w (z) — w; has a zero in B(zp, p). Thus,

region  includes B(0, 2 |w’ (20)). On the other hand,

10



Indeed, consider the identity
7= Y (20) (21 — 20) + Rz
Since fM) (2) = 0, (A20) together with (A7) imply

3
IT| < 3 | fal |21 — z0|*.

1/

Since w' (z9) = f2'* and |z — 2| = 5557, the latter inequality implies that

27" < S’ (o).

Therefore, € includes B(0,2|r|"/?).00

Before proceeding with the proof of Lemma 5, we still need one more auxiliary

lemma.

LEMMA A2. Under the null hypothesis, sup,ce, |9(2)] = Op(1) as n,p — oo
so that ¢, — ¢, where ©1 = {z: |Re(z) — z(h)| < 37(h)} and O,(1) is uniform
over h € (O,E} :

PROOF. First, consider the case when g(z) = exp (—32A,(z)), where

Ay(z) = Zln(z—)\j)—p/ln(z—)\)d}"p()\)

CFn(-2) o fu(i-Yaso

This statistic A,(z) is a special form of a linear spectral statistic

By(e) =D 0 - ()%, )

11



studied by Bai and Silverstein (2004). According to their Theorem 1.1, if ¢ (+)
is analytic on an open set containing interval Z. = [0, (1+ \/E)Q], then the se-
quence {A, (¢)} is tight. That is, for any 6 > 0 there exists a bound B such that
Pr(|A, (p)| < B) > 1— 0 for every A, () from the sequence.

A close inspection of Bai and Silverstein’s (2004, pp.562-563) proof of tight-
ness reveals that the bound B can be chosen so that it depends on ¢ () only
through its supremum over an open area A that includes Z. and where ¢ (+) is
analytic. In particular, if we denote by ® a family of functions ¢ (z), each of
which is analytic in the area A = {z : supyez |z — A| < ¢}, and if @ is such that

SUP, e SUPyea | ()] < 00, then {sup,cq [, ()]} is tight.
Let ® = {¢(z) =In (1 — %) : 2z € Oy}, where

0, = {z : Re(z) > (1 + \/5)2 +2€}.
This family of functions satisfies the above requirements. Indeed,

<1

sup
T€A,2€04

z): (1++e) +¢
2l (14 0) + 2

so that each of () € ® is analytic in A. Moreover, since by definition

ln<1—z> :ln‘l—f‘—i-iarg(l—f),
z z z

we have
supsup |y (¢)] <In |1 — R| + .,
ped zcA 2
where
R= sup E’ < 1.
T€EA,z€EOQy | 2

Therefore, {sup,cq |2, (¢)]} is tight and sup..e, [g(2)| = Op(1), where O,(1) does

12



not depend on h.
It remains to note that, as p,n — oo so that ¢, — ¢,

inf (Zg(h) _ %r(h)> - %(h + 1)_(C—|— h) I

nelor] 3 % (1 + \/2)2 > (1 + \/5)2

almost surely. Therefore, for a sufficiently small £, Pr(0©; C ©,) — 1, and thus,
Sup,ce, |9(2)| = O,(1), where O,(1) is uniform over h € (0,h] .
Now, consider the case when

B np—p+2 h =z n hz A, (%)
9(2)_6Xp{ 2 ln<1 1+h5> 21+h 2 J°

Since, as has just been shown, sup, g, }exp (—34,(2))| = O, (1), we only need to

prove that sup,.g, §(2) = O, (1), where

- - np—p-+ 2 h =z nhRez
g(z)—exp{ 5 Reln(l > ST (-

We have

1+hS

h =z h =z h Rez
(i) (i )

Note that (A6) and the definition of ©; imply that

h Rez<1
1+h S

for any z € ©. In general, for any real = such that 0 < x < 1, we have

In(l—z)>— ’

1—z

13



Therefore, for any z € O,

1
ln(l— h Rez)>_<s hRez) hRez

C14+h 1+h’

and we can write

. p hRez 2 hRez\ !
1 L e+ = - 1. A2
0 ) < i (e 2) (- 00 (A26)
From the definition of O,
hRez h 1 3hz(h) 3
‘1+h <1+h<§r<h>+zo<h>><§1+—h—2<h+%>'

Further, S —p = A\ + ...+ X\, —p = O, (1) by Theorem 1.1 of Bai and Silver-
stein (2004). Combining these facts with (A26), we get sup,ce, §(2) = O, (1)

uniformly over h € (O, i_l] O

Let us return to the proof of Lemma 5. Consider ¢(v)w as a function of w.

According to (A8) and (All), ¢(v)w has a convergent series representation

o(v)w = Z asw® (A27)

for sufficiently small |w|. Let us show that the series in (A27) converges for all

w € Q. Indeed, from (A10), we see that

plv)w = (20'(2) " g (2). (A28)

By Lemma A1 (ii), z, viewed as the inverse of w(z), is analytic in 2. Further, g (2)

14



and w’ (z) are analytic in 2 (Q) = B (29 (h), p(h)). Finally,
/ 1 1/2
! (2)] > 5 |£2”°] (A29)

for € B (z(h),p(h)) by Lemma A1 (i), and f21/2 # 0 for h € (0,h] . Therefore,

¢(v)w must be analytic in 2 and the series (A27) must converge there.

1/2

Now, formula (A7) implies that infhe(o,ﬁ] { 2

/ h} > 0. Therefore, from
Lemma A2 and (A29), we have

suplp(v)w| = sup = h7'0,(1), (A30)

weN z€B(z0(h),p(R))

‘ 9(2)

2w'(2)

where O,(1) is uniform in h € (0, 4] .

By Lemma Al (iii) and (iv), |7 (k)| > |ReT (h)| > 71 and B <0, |7'1|1/2) is con-
tained in , where p(v)w is analytic. Using Cauchy’s estimates for the derivatives
of an analytic function (see Theorem 10.26 in Rudin (1987)), (A27) and (A30), we
get

la < |7 sup Jp(v)w| = hTO,(1). (A31)
wGB(O,\Tﬂl/z)

Next, Olver (1997, ch. 4, pp.109-110) shows that I' (a,¢) = O (e7¢¢*7") as

|¢| — oo, uniformly in the sector |arg (¢)| < § — ¢ for an arbitrary positive ¢. Let

us take o = #t! and ¢ = 7 (k) n. Lemma A1 (iii) shows that
|7 (h)n| > Tin — o0

and

T2 s
< arctan — < —,
T1 2

arctan

|arg (7 (h) n)| =

Im 7 (h) ‘
Rer ()

15



uniformly over h € (O, /_1] . Therefore,

r (3 ; L n> ~0 (e—ﬂh)" (r (h) n)s?) -0, <e—%ﬁn) (A32)

for any integer s, uniformly over h € (0, B} .

Equality (A32), the definition (A14) of ¢4 ; (h), and inequality (A31) imply that
err (h) = W10, (e72™™), (A33)

where O,(-) is uniform over h € (0, h] .

Next, consider w¥¢p, (v) as a function of w. Since, by definition,

it can be interpreted as a remainder in the Taylor expansion of ¢ (v) w. As explained
above, such an expansion is valid in €2, which includes the ball B (0, 2|7(h)|" 2)
by Lemma A1l (iv). By a general formula for remainders in Taylor expansions, for
any w € B (0, |T(h)|1/2>,

dk

e ). (A34)

k
iy (0)] < 1L

max
kL weB (o, (m)72)

Further, for any w € B <0, |7'(h)|1/2>, a ball with radius |7,|"/? centered in
w is contained in the ball B (O,Q 17 (h)|" 2) C Q. Therefore, using (A30) and
Cauchy’s estimates for the derivatives of an analytic function (see Theorem 10.26
in Rudin (1987)), we get
dk

g <v>>’ < e ™M sup fwp (0)] = hO,(1). (A35)

max
dwk we)

weB(0,|7(h)['/?)

16



Combining (A34) and (A35), we have

sup |y, (0)] = hO,(1).

ve(0,7(h)]

This equality together with (A31) and the fact that, by definition, ¢, (0) = ay
imply that

=ht0,(1 A36
M$%MWA)! (1), (A36)

where O,(1) is uniform in h € (0, 4] .

For €5 (h), the substitution of variable v = 7(h)? in the integral (A15) yields

k+1

ek (h) = n_(k“)/z/ e "M T 1 (h)' T @, (v) da.
0

Therefore,

E+1

a2 ()02 < e 0] [ TR ()T e (a3
_ e‘r(h)
< max \gok |/ AEQIN yy 7 dy.
But by Lemma A1 (iii),

Ret(h) - Re(h) L _ N
7 (h)] — [Rer(h)|+ [ImT (R)] = 71+ 7

for all h € (0,h]. Therefore, the integral in (A37) is bounded uniformly over
h € (0, ﬁ} . Using (A36), we conclude that

€k,2 (h) =h" 10 ( k+1)/2) (A38)

17



Combining (A9), (A13), (A33), and (A38), we get

k1
n n s+1 as 0, (1)
]{ e Bg(z)dz = e fO( F( >n(5+1 +Iml’l+1/>’ (A39)
=0

[20,71] s

where O,(1) is uniform in h € (0, 4] .
Let us now consider the contribution of K \[z, z1], that is, the part of contour

K, excluding the segment [z, 21], to the contour integral fK e ™ g(2)dz. On K7,

Im 2z

1 -
“mh)—A’

Re (f(2) — fo) = / In aF, (V)

is an increasing function of Im (z) . Hence, on K\ [0, 21],

Re(f(2) — fo) > ReT > 71.

Therefore,

< e e j{ lg(z)dz|
Ki\[z0,21]

= e e [32(k)| O, (1)

7{ e @ g(2)dz
Ki\[z0,21]

= e e R0,(1), (A40)

For the horizontal part K5 of K., consider first the case when

g(z) = exp{—1A,(2)}. We have

h
e 1+hzdz‘

P
]{e_”f(z)g(z)dz = ]{eglhhz H (z — /\j)fé dz| < e‘gln(?’z‘)(h))}[

2 ? j:1 K2
n b -1 ( h )
_(n h —% (cp In(320(h)) — 7 20(h)) Adl
(21+h) ’ -

18



But o(h) = h + ¢, so that

h
T+h?

h
1+h

cpIn (320 (h)) — 2o (h) > ¢, In (20 (h)) — h > 2fy + ¢,

Combining such a lower bound with (A41), we get

fe_”f(z)g(z)dz = e "op10 (e_%cp) =e "pt0, (6_%0) ; (A42)

2

where O, (6_%6) does not depend on h.

For the case when

np—p—+2 h =z n hz A, (%)
= - In(l——= ) — = —
9(2) eXp{ 2 n( 1+hS> 21+h 2 [’
we have
h _np—p+2
—nj(z < 2
j{e 1@ g(2)dz| = 74(1—1_’_—}15) H(z—AJ) 2dz
2 2 7=1
P 7np—2p+2
< o Bm@Eam) ]{ __h 2 d
= c 1+hS :
K>
Further,
np—p+2 np—p+2
h z\ 2 z0(h) h x\ 2
- dz| < 1———= d
f( 1+hS> = /_Oo ( 1+hS) ’
Ko

_ 28 14k b B
 np—p h 1+h S '

19



Hence, we can write

%enf(z)g(z)dz < 25 1+ he—"pfp ln(l—ﬁLg"»—gln(?)zo(h))' (A43)

“np—p h

2

Now, for any real 2 such that 0 <z < 1, we have In (1 — x) > —3%. Hence,

np—p h  z(h) hzo (h) _1ﬁhzo(h)
T2 ln(l_uh S )<(p_cp>(5_ 1+h ) 21+h

But

(v c) (s—’%’}f) 110, ().

The O, (n™') quantity here is uniform over h € (0,h] in view of the facts that
S —p =0, (1) by Theorem 1.1 of Bai and Silverstein (2004),

hZO (h)
1+h

‘:|h+cp|§ i+l

for all A € (0, E], and n and p diverge to infinity at the same rate. Therefore,
(A43) implies

—1
7{ eI g(2)ds| = (g%) o5 (e mGt) o) o (1), (Add)

2

which, similarly to (A41), implies (A42).
Combining (A39), (A40), and (A42), we get

—n —nf s+1 R 0, (1
f e Pg(z)dz=e (§ :F < > Gro2 T h 2513/2) : (Ad5)
Ky n(
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Finally, note that

j{ e @ g(2)dz :j{ e_"f(z)g(z)dz—jl{~ e " #g(2)dz,

K Ky K_

where K_ is a contour that coincides with K_ but has the opposite orientation.
As explained in Olver (1997, pp.121-122), a, with odd s in the asymptotic expan-
sion for ffﬂ e () g(z)dz coincides with the corresponding a, in the asymptotic
expansion for fK+ e () g(2)dz. However, a, with even s in the two expansions
differ by the sign. Therefore, coefficients as with odd s cancel out, but those with

even s double in the difference of the two expansions. Setting k£ = 2m, we have

sS—=

sy 1\ «a 0, (1)
—nf(z) dz =2 —nfo T - 2s D

which establishes Lemma 5.

C Proof of Lemma 6

2
Fix 0 <e < <\/c/ h— \/Z) , and consider the event £; that holds if and only if
(A4) and (A5) hold,

Z()(h) — bp > €

and

The fact that, with probability approaching 1, for all h € [71, oo), the integrals in
(2.9) and (2.10) do not change as K is deformed into K (k) can be established along
the same lines as in the proof of Lemma 4 by replacing event E with event Fj.

Similarly, an equivalent, for h > h, of Lemma 2A, is easily proved along the

same steps. Hence, since Re ( f(z)—f (zo (ﬁ))) is an increasing function of Im 2
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on K (iL),

D

e @ g(2)dz ewf(zo(il)) z)dz
7{(1@) g(2)dz| < 7{(( 9(2)a]

= e m(=M)o (1. (A46)

Further, as in (A41) and (A44), we have

_ (gHLh)1€g<cpm<3zo<ﬁ>>lhzo(ﬁ))op(l)

j{ <~)e_”f(z)g(z)dz
_ =)0, 1), (A47)

Combining (A46) and (A47), we get

j{ i) e_”f(z)g(z)dz = e_”f(*"o(ﬁ))opu)‘

Similarly,

f o9 = eI ()0, (1),

Lemma 6 follows from the latter two equalities.

D Proof of Lemma 11

Consider
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where 1, (A) is defined in (3.2). Making the substitution A = 1 + ¢, — 2,/¢, cos

and replacing zo(h) by the right-hand side of (3.7), we get

1) = 2/’Tln(h+h_lczl,+2\/c_pcos€)sin20d(9
0

T 1+¢, —2,/¢,cos0
2
1 zwln)\/cp/h—l—\/ﬁew sin® 0
= = dé.
7r/0 1+c¢,—2,/¢,cos0

0

Further, changing the variable of integration from 6 to z = €?, we get

I(h) = 271
|z|=1

dz. (A48)

L w[(VealRe VB (Velh o Vi) (e - 2
o 2(v5 — 2) (v — )

Representing the logarithm of a product as a sum of logarithms, splitting the

integral into two parts corresponding to the summands, and changing the variable

1

of integration in the second integral from 2z to 27", we get

1 In (N/cp/hjt\/ﬁz) (z— 271
=3 R W )

|z|=1

dz. (A49)

If h < /¢, then function In (W + \/EZ) is analytic inside the ball |z| < 1.
Therefore, if ¢, < 1, the integrand in (A49) has singularities only at zero and ,/c,.
If ¢, > 1, the singularities are at zero and \/Tcp. If ¢, = 1, the only singularity
is at zero. Computing the residues of the integrand at the singularity points and
using Cauchy’s theorem, we get

‘zi;lln(1+h)+%+ln% if h < /¢, and ¢, <1

o : (A50)
Eem (14 2) 4+ Lt ifh< 5ande, > 1
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If h > ,/c,, then represent the logarithm in (A48) in the form

In [(2\/%7'}‘ x/ﬁ) (z‘l\/cp%qt \/ﬁ)] :

and proceed as above to get

cp—1 1 1 :
Z—=In(h+c¢,)+++=Inh ifh> /c,andc, <1
I(hy=4 hre) s Ve 8 . (A51)
=2 (1+h)+ 4 +Inh  ifh> /G and ¢, > 1
Now, it is straightforward to verify that Lemma 11 follows from (A50), (A51),

and from the facts that

fo==3 (g = e [l - 0 a7 W),

that HLhzo(h) = h + ¢, and that the Marchenko-Pastur distribution has mass

max (0,1 — c;l) at zero.

E Proof of Lemma 12

Let zo; = lim 2q (h;) asn, p — oo. As follows from Bai and Silverstein (2004, p. 563),

and
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where C is a fixed contour of integration encircling the support of the Marchenko-

Pastur distribution, but not zq (h;) and z;, and

p

M) =30y = 2 = p [ @2 A @),

j=1

Therefore,

Further, as can be shown using arguments similar to those given on p.563 of Bai

and Silverstein (2004),
f]n (M) M, (2)dz = j[hl (M) M, () dz + 0,(1),
2o — R 205 — R
c c

where {Mp (2),p=1,2, } is a tight sequence of random continuous functions

on C. On the other hand, as n,p — oo,

In <—ZO (h;) _Z> — 0
205 — <

uniformly over C. Hence,

7§1n <M) NI, (=) d = o,(1),

205 — %
c

and thus

Ay (20(hy)) — Ay (205) = 0p(1).

The latter equality implies that the vectors (S — p, A, (20(h1)) , ..., A, (20(hr))) and

(S —p, A, (201) 5 -y A (20,)) simultaneously diverge, or converge, in distribution,
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to the same limit.
Now, according to Theorem 1.1 of Bai and Silverstein (2004), (S — p, A, (201) 5 ---,
A, (#0r)) converges in distribution to a Gaussian vector (7, &, ..., §,) with means En =

0,

1 Cm3 (Z)
E, = —— In 205 — % 3
3 : ( ) (1+m(2)” —cm?(2) (1 +m(2))

dz, (A52)

covariances

In (z9; — zl )In (zor — 22) dm (z1) dm (22)
C ; = J dzd
ov (537 gk \% \%\ (22))2 le d22 210422,
(A53)
2o In ( zoj z1) dm(z1)dm (29)
C dzd Ab4
ov (ﬁj, n j{% 22))2 4z a2 z1422, ( )
and variance
2122 dm (z1) dm (29)
Var (n) = dz1dzs, A55
Chs 2n2 7{7{ m(z)—m(z))? da dzy . (A55)
where
m(z) =—(1—c)z " +em(2)
with m () given by (3.6) where ¢, is replaced by c. That is,
—z+c—1+\/(2—c—1)2—4c
m(2) = (A56)

2z ’

where the branch of the square root is chosen so that the real and the imaginary

parts of \/ (z — ¢ — 1)® — 4c have the same signs as the real and the imaginary parts
of z — ¢ — 1, respectively. The contours of integration in (A52)-(A55) are closed,
oriented counterclockwise, enclose zero and the support of the Marchenko-Pastur

distribution with parameter ¢, and do not enclose zy; and 2.
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The expressions for E¢;, Cov ({ RS k), Cov (5 s 77) and Var (1) can be simplified
along the same steps as in Bai and Silverstein (2004, pp.596-599). Exactly following

the derivation of their formula 5.13, we get

Eg _ ln((Zoj —CL) (ZOJ' - b

(=) 4, (A57)

z- 3
4 I \/40— (x—c—1)°

where a = (1 — /¢)* and b = (1 4+ /2)*.
Making substitution z = 1+ ¢ — 2y/ccos 6 as in the above proof of Lemma 11,

and using similar steps to those used in that proof, we obtain

/\/4 n (#0; — @) )ng;—— "o \/c/7h+\/_el‘)
L zlm(mwh—jz)dz_mm.

|z|=1

Using this in (A57), we get

e, iln<<\/0/hj+\/h_j)2( c/hj—wz)z)—m T
1
2

For the covariance Cov (fj,fk) we use formula 1.16 of Bai and Silverstein

(2004), to get

Cov (&, &) = —2;2 }{ f{ In (0 = 2 (ma))In (zor = 2 (m2)) 4 n (AS)

(m1 — my)

where
1 c
- , A
z(m) - + T (A59)

Note that substituting m (z2) as defined in (A56) in the right-hand side of (A59),
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we get z, so (Ab9) describes a function inverse to m (z) .

Let us split the double integral in (A58) into three parts according to the

decomposition

Cov (€,64) = 5 [Var(&;) + Var (€) — Var (&, ~ &)]

where
Var(e) = — -1 %]{ In (zo; — 2 (mq)) In (29; — Z(m2))dm1dm2,
2r (my — m2)
Var(€,) 7{?{ In (201 — 2 (my)) In (Zozk —z (m2))dm1dm2,
ml m2)
and

ZOJ Z(ml) 1 (sz—Z(ﬂw))

n
Z z m1 Z *Z(mQ)
Var (5 —§k 52 7{?{ r m2);k dmidms.

(A60)

(A61)

(A62)

The contours of integration over m; and ms in (A60-A62) are obtained from

the contours of integration over z; and 2, in (A53) by transformation m (z) . Recall

that by assumption the contours over z; and z; intersect the real line to the left of

zero and in between the upper boundary of the support of the Marchenko-Pastur

distribution, (1 + 1/¢)°, and min {#0j, zor } - Therefore, as can be shown using the

definition (A56) of m (z), the m-contour and ms-contour are clockwise oriented

and intersect the real line in between — (14 /)~ and min {m (z0;) ,m (200)} =

—max {h; (h; + o) g (hy + ¢)"'} and to the right of zero. In particular, both

contours enclose 0, —h; (h; +¢)~" and —hy (hy +¢)~", but not —1, — (1 + h;)~"

and — (1 + hy) ™'

Without loss of generality, assume that the mo-contour encloses the m;-contour.
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For fixed ms, we have

j{ln (207 — Z(m1>)dm1 _ }{ ( ~ g (1) dmy

(ml — m2)2 R0j — % (ml)) (ml - m2)

_ 1/M%—C/(m1—|—1)2 .
B %(ZOj+1/m1—C/(m1+1))<m1_m2)d 1 (A63)

where the first equality follows from integration by parts and the fact that
In (29; — 2 (mq)) is a single-valued function along the m;-contour. To see this,
note that

z0j (m1+ (1+hy) ")
my + 1

In (20, — 2(m1)) =1In e

J

+1n<m1+ i )—lnml.

The first of the latter three terms is a single-valued function along the m;-contour
because it does not have singularities inside the contour. The second and the third
terms are not single-valued, but their changes after passing once along the contour
cancel each other.

Now, the integrand in (A63) has first-order poles at 0, —h; (h; + )t ma, —1
and at — (1 4+ hj)f1 and no other singularities. As explained above, only the first

two of the above poles are enclosed by the mj-contour. Using Cauchy’s residue

theorem, we get

fo Cos =2 0m)) 0 <_L N

(m1 - m2> mao mo + hj (hj + C)_1> ‘

(AG4)
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Let us denote —h; (h; +¢)~" as ;. Using (A64) and (A60), we get

272

2ms _
= 05 In (1 — zg;'z (2)

i 1+h)" 1 1
_ g ma + (1 + h;) 1 dmy
27T2 m2+1 mo m2—9j

211 mo — 9]‘ 1 1
— ¢In|{—— | | — — dme.
27T2 iy mo mo — 0]‘

By Cauchy’s residue theorem, the first term in the latter expression is equal to

Var(e) = 5% finGos s (ma) (- L Y amg
)

—21n (1 — c‘lhjz) . The second term equals zero because the integrand has anti-

2
derivative —% [ln (mi;ej)] which is a single-valued function along the contour.

Similarly, we can show that
Var(§;,) = —2In (1 — ¢ 'hj)

and that
(1 — ¢ Yhihy)?
(1 — c*lhi) (1—cth2)

Var(§; — &) =2In

Combining these results, we get

Cov (g],gk) = —In (1 — c_lh?) —In (1 — c_th)
(1 — ¢ Yhihyg)?

(L—c'h2) (1 —c'h})

= —2In (1 — c_lhjhk) )

—1In

For Cov (5 i 77) and Var (7)), an analysis similar to but simpler than that leading
to the above formula for Cov (é‘j, &) shows that Cov (fj, 1) = —2h; and Var (n) =
2c.
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F Proof of Lemma 13

First, note that

CLR = Z q(\;) —p / q(x)dF, (z),

where ¢(x) = x — Inz — 1. Also, recall that, as shown in the proof of Lemma 12,
Ay (20(h)) = Ap (20) + 0p(1),

where 2o = lim zg (h) and

By a0) = 37 50) =1 [ s(2)d, (@),
j=1
with s(z) = In(zp — x). Therefore, in view of Theorem 1.1 of Bai and Silver-

stein (2004), CLR and A, (2(h)) jointly converge in distribution to a Gaussian

vector with covariance

1 s(z)a(ze)  dm(z)dm(z), o
R = 7{7{ (. (21) dzi1dz,. (A65)

~2r? —m(z)? du de

Here m (z) is as defined in (A56), and the contours of integration are closed, ori-
ented counterclockwise, enclose the support of the Marchenko-Pastur distribution
with parameter ¢ < 1, and do not enclose zy. Further, we will choose such contours
so that the z;-contour encloses 0, but the zo-contour does not.

Using Formula 1.16 of Bai and Silverstein (2004) we can simplify (A65) to get

dmldmg,

T (20— 2 (m1)) (= (ma) — Inz (my) — 1)

(m1 — m2)2

where




and the contours of integration over m; and msy are obtained from the contours
of integration over z; and z; in (A65) by the transformation m (z). In particular,

mq-contour is oriented clockwise and encloses —h%c and 0 but not —1 and —lﬁ,

whereas mo-contour is oriented counterclockwise and encloses C% and —1 but not

h
— e and 0.

Using (A64), we can write R = Ry + Ry + R3, where

1 1 1
R = —— —— + z (mg) dma,
: wf( ma m2+hj(hj+c)—1) (ma) dma

' 1 1

Ry = lj{ -4 — | Inz (my) dmy, and
T my - ma+ hj(hj +¢)
' 1 1

Ry = 3% —— — | dm,.
T my  mag+ hj(hj +c)

. 1
Since p— +

1 . . .
et (et 18 analytic in the area enclosed by the ms-contour,

R3 = 0. Further, using Cauchy’s theorem and the fact that
1 c

Z(mz):—E+1+m2

)

we get Ry = —2h. Finally, integrating R, by parts, and using the fact that In z (m5)

is a single-valued function on the msy-contour, we get

C

Ry — L 7{ 22O (g Do (my + by (hy + ©)7)) dims.
T —on T it

The integrand in the above integral has only two singularities in the area enclosed
by the msy-contour: a pole at ﬁ and a pole at —1. Therefore, by Cauchy’s residue
theorem, we get Ry = 2In (1 + h). To summarize, R = Ry + Ry + R3 = —2h +
21In (1 4 h), which establishes Lemma 13.
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