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Abstract

This note contains proofs of lemmas 4, 5, 6, 11, 12 and 13 in Onatski,

Moreira and Hallin (2011), Asymptotic power of sphericity tests for highdi-

mensional data, where we refer to for definitions and notation.

A Proof of Lemma 4

The original contour K is such that the singularities z = λ1, ..., z = λp of the

integrand remain inside, whereas the singularity z = 1+h
h
S remains outside the

domain encircled by K. Suffi cient conditions for K to be similarly located with

respect to the singularities of the integrand, and for f(z) and g(z) to be well-defined

on K are

min
h∈(0,h̄]

z0(h) > max {bp, λ1} (A1)

and

max
h∈(0,h̄]

h

1 + h

z0(h)

S
< 1. (A2)
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Hence, to establish Lemma 4 it is enough to show that (A1) and (A2) hold with

probability approaching one as p, n→∞ so that cp → c.

Let us fix a positive ε such that ε <
(√

c/h̄−
√
h̄
)2

. Consider the event E

that holds if and only if the following four inequalities simultaneously hold:

minh∈(0,h̄] (z0(h)− bp) > ε, (A3)∣∣∣bp − (1 +
√
c
)2
∣∣∣ < ε/4, (A4)∣∣∣λ1 −

(
1 +
√
c
)2
∣∣∣ < ε/4, (A5)

minh∈(0,h̄]

(
1 + h

h
S − z0(h)

)
> ε. (A6)

Clearly, E implies (A1) and (A2). On the other hand, Pr (E)→ 1 as n, p→∞ so

that cp → c. Indeed, by definition of z0(h) and bp,

z0(h)− bp =

(√
cp
h
−
√
h

)2

.

Therefore, as cp → c,

min
h∈(0,h̄]

(z0(h)− bp)→ min
h∈(0,h̄]

(√
c

h
−
√
h

)2

=

(√
c

h̄
−
√
h̄

)2

,

which is larger than ε by assumption. Hence, the probability of (A3) converges to

one. Further, bp → (1 +
√
c)

2 by definition, while λ1 → (1 +
√
c)

2 almost surely

under our null hypothesis, as shown, for example, in Geman (1980). Thus, the

probabilities of (A4) and (A5) converge to one too. Finally, by definition of z0(h),

h
1+h

z0(h) = h+ cp, so that

minh∈(0,h̄]

(
1 + h

h
S − z0(h)

)
=

1 + h̄

h̄

(
S − h̄− cp

)
.

But under our null hypothesis S/p→ 1 in probability, as n, p→∞ so that cp → c.
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This follows, for example, from Theorem 1.1 of Bai and Silverstein (2004). Hence,

the probability of (A6) also converges to one. It remains to note that 1 − Pr (E)

equals the probability of the union of the events complementary to (A3)-(A6).

B Proof of Lemma 5

We have shown, in the proof of Lemma 4, that Pr (E) → 1. Therefore, it is

suffi cient to prove Lemma 5 under the assumption that E holds. Event E implies

that f(z) and g(z) are analytic at z0(h) for any h ∈
(
0, h̄
]
. Furthermore, still

under E,

f1 ≡
d

dz
f(z)|z=z0(h) = 0 and f2 ≡

1

2

d2

dz2
f(z)|z=z0(h) < 0.

Indeed, by definition, z0(h) is a critical point of f(z) when h̄ <
√
cp. But E implies

h̄ <
√
cp. Otherwise,

z0(h)− bp ≡
(√

cp
h
−
√
h

)2

= 0 < ε

at h =
√
cp ≤ h̄, which contradicts (A3). Further, a direct computation based on

(3.3), (3.6), and (3.7)1 shows that

f2 = −1

4

h2

(cp − h2) (1 + h)2 < 0. (A7)

First, let us focus on the analysis of
∮
K1
e−nf(z)g(z)dz. Olver (1997) derives a

useful representation for the part of
∮
K1
e−nf(z)g(z)dz that corresponds to a portion

ofK1 close to its boundary point, which in our case is z0(h). To make our exposition

self-contained, we sketch Olver’s derivation; for details, we refer the reader to pages

1Here and throughout this Supplement, numerical references are for equations in the main
text.
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121-124 of Olver’s book.

Let us introduce new variables v and w by the equations

w2 = v = f (z)− f0, (A8)

where the branch of w is determined by lim {arg (w)} = 0 as z → z0(h) along K1,

and by continuity elsewhere.

Consider w as a function of z. Since f1 = 0, there exists a small neighborhood of

z0(h), where the indicated branch of w(z) is an analytic function. Moreover, there

exists a small number ρ(h) > 0 such that w(z) maps the disk |z − z0(h)| < ρ(h)

conformally on a domain Ω containing w = 0.

Let z1(h) be a point of K1 chosen suffi ciently close to z0(h) to insure that

the disk |w| ≤ |f(z1(h))− f0|1/2 is contained in Ω. Then the portion [z0, z1] ≡

[z0(h), z1(h)] of contour K1 can be deformed, without changing the value of the

integral
∮

[z0,z1]
e−nf(z)g(z)dz, to make its w(z) map a straight line.

Transformation to the variable v gives

∮
[z0,z1]

e−nf(z)g(z)dz = e−nf0
∮
[0,τ(h)]

e−nvϕ(v)dv, (A9)

where

τ(h) = f(z1(h))− f0, ϕ(v) =
g(z)

f ′(z)
, (A10)

and the path for the integral on the right-hand side of (A9) is also a straight line.

For small |v| 6= 0, ϕ(v) has a convergent expansion of the form

ϕ(v) =
∞∑
s=0

asv
(s−1)/2, (A11)

in which the coeffi cients as are related to fs and gs. The formulae for a0, a1, and
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a2 are given, for example, on p.86 of Olver (1997). We use them in the statement

of Lemma 5.

Finally, define ϕk(v), k = 0, 1, 2, ... by the relations ϕk(0) = ak and

ϕ(v) =
k−1∑
s=0

asv
(s−1)/2 + v(k−1)/2ϕk (v) for v 6= 0. (A12)

Then the integral on the right-hand side of (A9) can be rearranged in the form

∮
[0,τ(h)]

e−nvϕ(v)dv =
k−1∑
s=0

Γ

(
s+ 1

2

)
as

n(s+1)/2
− εk,1 (h) + εk,2 (h) , (A13)

where

εk,1 (h) =
k−1∑
s=0

Γ

(
s+ 1

2
, τ(h)n

)
as

n(s+1)/2
, (A14)

εk,2 (h) =

∮
[0,τ(h)]

e−nvv(k−1)/2ϕk (v) dv, (A15)

and

Γ (α, x) = e−xxα
∫ ∞

0

e−xt (1 + t)α−1 dt

is the incomplete Gamma function.

This completes our sketch of Olver’s derivation. The remaining part of the

proof of Lemma 5 is mostly concerned with two auxiliary lemmas establishing

uniform asymptotic properties of εk,1 (h) and εk,2 (h) . The first of these two lemmas

provides explicit forms for ρ(h), z1(h), and τ(h) allowing further analysis of their

dependence on h.

Lemma A1. Let B (α,R) and B (α,R) denote, respectively, the open and

closed balls in the complex plane with center at α and radius R. Further, let

r(h) = min
{
z0(h)−max {bp, λ1} , 1+h

h
S − z0(h)

}
, ρ(h) = 1

3·24 r(h), z1(h) = z0(h)+

i
9·26 r(h), and τ(h) = f(z1(h))− f0. If event E holds, then,
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(i) For any ζ1, ζ2 from B (z0(h), ρ(h)), we have |w (ζ2)− w (ζ1)| > 1
2

∣∣∣f 1/2
2

∣∣∣ |ζ2 − ζ1|;

(ii) The function w(z) is a one-to-one mapping of B (z0(h), ρ(h)) on an open set

Ω. The inverse function z(w) is analytic in Ω;

(iii) There exist positive constants τ 1 and τ 2 such that Re τ(h) > τ 1 and Im τ (h) <

τ 2 for all h ∈
(
0, h̄
]
;

(iv) B
(

0, 2 |τ(h)|1/2
)
is contained in Ω.

Proof. Throughout this proof, we simplify the notation and write z0, z1, r,

ρ, and τ instead of z0(h), z1(h), r(h), ρ(h), and τ(h), respectively. First, we show

that w(z) is analytic in B̄ (z0, ρ) and that w′ (z0) = f
1/2
2 . Let f (j)(z) denote the

j-th order derivative of f(z). Consider the Taylor expansion of f (j)(z) at z0 :

f (j) (z) =
k∑
s=0

1

s!
f (j+s) (z0) (z − z0)s +Rj,k+1.

In general, for any z ∈ B (z0, R), the remainder Rj,k+1 satisfies

|Rj,k+1| ≤
|z − z0|k+1

(k + 1)!
max
|t−z0|≤R

∣∣f (j+k+1) (t)
∣∣ . (A16)

From definition (3.3) of f(z), we have

f (s) (t) =
cp
2

(−1)s−1 (s− 1)!

∫
(t− λ)−s dFp (λ) for s ≥ 2. (A17)

If t ∈ B
(
z0,

1
2
r
)
, then |t− λ| > 1

2
(z0 − λ) for any λ in the support of Fp. Therefore,

|t− λ|s+1 >
1

2s+1
(z0 − λ)s r,
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and using (A17) we get

∣∣f (s+1) (t)
∣∣ < s2s+1

r

∣∣f (s) (z0)
∣∣ for s ≥ 2. (A18)

Combining this with (A16), we obtain for k + j ≥ 2 and z ∈ B
(
z0,

k+1
k+j

2−k−j−2r
)
,

|Rj,k+1| ≤
|z − z0|k

2k!

∣∣f (k+j) (z0)
∣∣ . (A19)

Further, since

Rj,k =
1

k!
f (k+j) (z0) (z − z0)k +Rj,k+1,

(A19) implies that, for k + j ≥ 2 and z ∈ B
(
z0,

k+1
k+j

2−k−j−2r
)
,

1

2k!

∣∣f (k+j) (z0)
∣∣ |z − z0|k < |Rj,k| <

3

2k!

∣∣f (k+j) (z0)
∣∣ |z − z0|k . (A20)

Next, since f (1) (z0) = 0, inequalities (A20) imply that

|f(z)− f(z0)| = |R0,2| >
1

4

∣∣f (2) (z0)
∣∣ |z − z0|2 ≡

1

2
|f2| |z − z0|2 (A21)

for any z ∈ B
(
z0,

3
25
r
)
. Since f2 6= 0, inequality (A21) implies that f(z) − f(z0)

does not have zeros in B
(
z0,

3
25
r
)
except a zero of the second order at z = z0.

Therefore, √
f(z)− f(z0)

(z − z0)2 =
w (z)

(z − z0)

is analytic inside B
(
z0,

3
25
r
)
, which includes B̄ (z0, ρ), and converges to f 1/2

2 as

z → z0. This implies that w (z) is analytic in B̄ (z0, ρ) and w′ (z0) = f
1/2
2 .

Now, let us show that, for any z ∈ B (z0, ρ),

|w′ (z)− w′ (z0)| < 1

2
|w′ (z0)| . (A22)
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Indeed, since

w′ (z) =
f ′ (z)

2w (z)
=

1

2
(f (z)− f0)−1/2 f ′ (z)

and w′ (z0) = f
1/2
2 6= 0,

w′ (z)

w′ (z0)
=

(
1 +

R0,3

f2 (z − z0)2

)− 1
2
(

1 +
R1,2

2f2 (z − z0)

)
. (A23)

Note that for any y1 and y2 such that |y2| < 1,

∣∣∣∣ 1 + y1√
1 + y2

− 1

∣∣∣∣ ≤ |y1|+ |y2|
1− |y2|

, (A24)

where the principal branch of the square root is used. This follows from the facts

that, for |y2| < 1,
∣∣√1 + y2

∣∣ ≥ 1−|y2| and
∣∣1 + y1 −

√
1 + y2

∣∣ ≤ |y1|+ |y2| . Setting

y1 =
R1,2

2f2 (z − z0)
and y2 =

R0,3

f2 (z − z0)2

and using (A23), (A20) and the fact that, for any z ∈ B (z0, ρ),

∣∣∣∣f (3) (z0)

f (2) (z0)

∣∣∣∣ |z − z0| <
1

3
,

which follows from (A18), we get

∣∣∣∣ w′ (z)

w′ (z0)
− 1

∣∣∣∣ < 1

2
.

Hence, (A22) holds.

Finally, let ζ1 and ζ2 be any two points in B (z0, ρ), and let γ(t) = (1− t) ζ1 +

tζ2, where t ∈ [0, 1] . We have

∫ 1

0

(w′ (γ(t))− w′ (z0)) dt =
w (ζ2)− w (ζ1)

ζ2 − ζ1

− w′ (z0) .
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Therefore, using (A22), we obtain

∣∣∣∣w (ζ2)− w (ζ1)

ζ2 − ζ1

− w′ (z0)

∣∣∣∣ < 1

2
|w′ (z0)| .

This inequality and the fact that w′ (z0) = f
1/2
2 imply part (i) of the lemma.

Part (ii) of the lemma is a simple consequence of part (i) and of the analyticity

of w(z) in B̄(z0, ρ), established above. Indeed, by the open mapping theorem, Ω is

an open set. Next, by (i), w(z) is one-to-one mapping of B(z0, ρ) on Ω and has a

non-zero derivative in B(z0, ρ). Further, let ψ (w) be defined on Ω by ψ (w (z)) = z.

Fix w̃ ∈ Ω. Then ψ (w̃) = z̃ for a unique z̃ in B(z0, ρ). If w ∈ Ω and ψ (w) = z, we

have
ψ (w)− ψ (w̃)

w − w̃ =
z − z̃

w (z)− w (z̃)
.

By (i), w → w̃ as z → z̃, and the latter equality implies ψ′ (w̃) = 1
w′(z̃) . Therefore,

z(w) ≡ ψ (w) is an analytic inverse of w(z) on Ω.

To see that part (iii) holds, note that

Re τ =
cp
2

∫
ln

∣∣∣∣z1 − λ
z0 − λ

∣∣∣∣ dFp (λ) , (A25)

and for any λ such that 0 ≤ λ < z0, we have

∣∣∣∣z1 − λ
z0 − λ

∣∣∣∣ ≥ ∣∣∣∣1 +
i

9 · 26

r

z0

∣∣∣∣ .
When E holds, the latter expression is bounded from below by a fixed constant

that is strictly larger than one for all h ∈
(
0, h̄
]
. Therefore, when E holds, (A25)

implies that Re τ > τ 1 > 0, for all h ∈
(
0, h̄
]
, where τ 1 is fixed.

9



Next, by definition of τ , we have

Im τ = −1

2

(
h

1 + h

r

9 · 26
− cp

∫
arg

(
z1 − λ
z0 − λ

))
dFp (λ) .

But
h

1 + h
r <

h

1 + h
z0 ≡ cp + h,

which is smaller than a fixed positive number for all h ∈
(
0, h̄
]
when E holds. Here

the boundedness of h is obvious whereas the boundedness of cp follows from (A4).

Further, ∣∣∣∣arg

(
z1 − λ
z0 − λ

)∣∣∣∣ < π

2

for all h ∈
(
0, h̄
]
because Re z1−λ

z0−λ ≡ 1. Hence, there exists τ 2 such that |Im τ | < τ 2

for all h ∈
(
0, h̄
]
.

Finally, part (iv) of the lemma can be established as follows. Note that by

part (i), ∣∣w (z0 + ρeiθ
)
− w (z0)

∣∣ > ρ

2
|w′ (z0)|

for any θ ∈ [0, 2π] . Therefore, for any w1 such that |w1 − w(z0)| ≤ ρ
4
|w′ (z0)|, we

have

min
θ

∣∣w1 − w
(
z0 + ρeiθ

)∣∣ > ρ

4
|w′ (z0)| .

By a corollary to the maximum modulus theorem (see Rudin (1987), p.212), the

latter inequality implies that the function w (z)−w1 has a zero in B(z0, ρ). Thus,

region Ω includes B(0, ρ
4
|w′ (z0)|). On the other hand,

2 |τ |1/2 < ρ

4
|w′ (z0)| .
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Indeed, consider the identity

τ = f (1) (z0) (z1 − z0) +R0,2.

Since f (1) (z0) = 0, (A20) together with (A7) imply

|τ | < 3

2
|f2| |z1 − z0|2 .

Since w′ (z0) = f
1/2
2 and |z1 − z0| = 1

9·26 r, the latter inequality implies that

2 |τ |1/2 < ρ

4
|w′ (z0)| .

Therefore, Ω includes B(0, 2 |τ |1/2).�

Before proceeding with the proof of Lemma 5, we still need one more auxiliary

lemma.

Lemma A2. Under the null hypothesis, supz∈Θ1
|g(z)| = Op(1) as n, p → ∞

so that cp → c, where Θ1 =
{
z : |Re(z)− z0(h)| < 1

2
r(h)

}
and Op(1) is uniform

over h ∈
(
0, h̄
]
.

Proof. First, consider the case when g(z) = exp
(
−1

2
∆p(z)

)
, where

∆p(z) ≡
p∑
j=1

ln (z − λj)− p
∫

ln (z − λ) dFp (λ)

=

p∑
j=1

ln

(
1− λj

z

)
− p

∫
ln

(
1− λ

z

)
dFp (λ) .

This statistic ∆p(z) is a special form of a linear spectral statistic

∆p(ϕ) ≡
p∑
j=1

ϕ (λj)− p
∫
ϕ (λ) dFp (λ)
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studied by Bai and Silverstein (2004). According to their Theorem 1.1, if ϕ (·)

is analytic on an open set containing interval Ic ≡
[
0, (1 +

√
c)

2
]
, then the se-

quence {∆p (ϕ)} is tight. That is, for any θ > 0 there exists a bound B such that

Pr (|∆p (ϕ)| ≤ B) > 1− θ for every ∆p (ϕ) from the sequence.

A close inspection of Bai and Silverstein’s (2004, pp.562-563) proof of tight-

ness reveals that the bound B can be chosen so that it depends on ϕ (·) only

through its supremum over an open area A that includes Ic and where ϕ (·) is

analytic. In particular, if we denote by Φ a family of functions ϕ (x), each of

which is analytic in the area A =
{
x : supλ∈Ic |x− λ| < ε

}
, and if Φ is such that

supϕ∈Φ supx∈A |ϕ (x)| <∞, then
{

supϕ∈Φ |∆p (ϕ)|
}
is tight.

Let Φ =
{
ϕ(x) ≡ ln

(
1− x

z

)
: z ∈ Θ2

}
, where

Θ2 =
{
z : Re(z) >

(
1 +
√
c
)2

+ 2ε
}
.

This family of functions satisfies the above requirements. Indeed,

sup
x∈A,z∈Θ2

∣∣∣x
z

∣∣∣ =
(1 +

√
c)

2
+ ε

(1 +
√
c)

2
+ 2ε

< 1

so that each of ϕ(·) ∈ Φ is analytic in A. Moreover, since by definition

ln
(

1− x

z

)
= ln

∣∣∣1− x

z

∣∣∣+ i arg
(

1− x

z

)
,

we have

sup
ϕ∈Φ

sup
x∈A
|ϕ (x)| < ln |1−R|+ π

2
,

where

R ≡ sup
x∈A,z∈Θ2

∣∣∣x
z

∣∣∣ < 1.

Therefore,
{

supϕ∈Φ |∆p (ϕ)|
}
is tight and supz∈Θ2

|g(z)| = Op(1), where Op(1) does
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not depend on h.

It remains to note that, as p, n→∞ so that cp → c,

inf
h∈(0,h̄]

(
z0(h)− 1

2
r(h)

)
→ 1

2

(
h̄+ 1

) (
c+ h̄

)
h̄

+
1

2

(
1 +
√
c
)2
>
(
1 +
√
c
)2

almost surely. Therefore, for a suffi ciently small ε, Pr (Θ1 ⊆ Θ2) → 1, and thus,

supz∈Θ1
|g(z)| = Op(1), where Op(1) is uniform over h ∈

(
0, h̄
]
.

Now, consider the case when

g(z) = exp

{
−np− p+ 2

2
ln

(
1− h

1 + h

z

S

)
− n

2

hz

1 + h
− ∆p (z)

2

}
.

Since, as has just been shown, supz∈Θ1

∣∣exp
(
−1

2
∆p(z)

)∣∣ = Op (1), we only need to

prove that supz∈Θ1
g̃ (z) = Op (1), where

g̃ (z) = exp

{
−np− p+ 2

2
Re ln

(
1− h

1 + h

z

S

)
− n

2

hRe z

1 + h

}
.

We have

Re ln

(
1− h

1 + h

z

S

)
= ln

∣∣∣∣1− h

1 + h

z

S

∣∣∣∣ > ln

(
1− h

1 + h

Re z

S

)
.

Note that (A6) and the definition of Θ1 imply that

h

1 + h

Re z

S
< 1

for any z ∈ Θ1. In general, for any real x such that 0 < x < 1, we have

ln (1− x) > − x

1− x.
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Therefore, for any z ∈ Θ1,

ln

(
1− h

1 + h

Re z

S

)
> −

(
S − hRe z

1 + h

)−1
hRe z

1 + h
,

and we can write

ln g̃ (z) <
p

2cp

hRe z

1 + h

[(
p− cp +

2

n

)(
S − hRe z

1 + h

)−1

− 1

]
. (A26)

From the definition of Θ1,

∣∣∣∣hRe z

1 + h

∣∣∣∣ < h

1 + h

(
1

2
r(h) + z0 (h)

)
<

3

2

hz0 (h)

1 + h
=

3

2
(h+ cp) .

Further, S − p ≡ λ1 + ... + λp − p = Op (1) by Theorem 1.1 of Bai and Silver-

stein (2004). Combining these facts with (A26), we get supz∈Θ1
g̃ (z) = Op (1)

uniformly over h ∈
(
0, h̄
]
.�

Let us return to the proof of Lemma 5. Consider ϕ(v)w as a function of w.

According to (A8) and (A11), ϕ(v)w has a convergent series representation

ϕ(v)w =
∞∑
s=0

asw
s (A27)

for suffi ciently small |w| . Let us show that the series in (A27) converges for all

w ∈ Ω. Indeed, from (A10), we see that

ϕ(v)w = (2w′(z))
−1
g (z) . (A28)

By Lemma A1 (ii), z, viewed as the inverse of w(z), is analytic in Ω. Further, g (z)

14



and w′ (z) are analytic in z (Ω) ≡ B (z0 (h) , ρ (h)) . Finally,

|w′ (z)| > 1

2

∣∣∣f 1/2
2

∣∣∣ (A29)

for z ∈ B (z0(h), ρ (h)) by Lemma A1 (i), and f 1/2
2 6= 0 for h ∈

(
0, h̄
]
. Therefore,

ϕ(v)w must be analytic in Ω and the series (A27) must converge there.

Now, formula (A7) implies that infh∈(0,h̄]

{∣∣∣f 1/2
2

∣∣∣ /h} > 0. Therefore, from

Lemma A2 and (A29), we have

sup
w∈Ω
|ϕ(v)w| ≡ sup

z∈B(z0(h),ρ(h))

∣∣∣∣ g (z)

2w′(z)

∣∣∣∣ = h−1Op(1), (A30)

where Op(1) is uniform in h ∈
(
0, h̄
]
.

By Lemma A1 (iii) and (iv), |τ (h)| > |Re τ (h)| > τ 1 and B
(

0, |τ 1|1/2
)
is con-

tained in Ω, where ϕ(v)w is analytic. Using Cauchy’s estimates for the derivatives

of an analytic function (see Theorem 10.26 in Rudin (1987)), (A27) and (A30), we

get

|as| ≤ |τ 1|−s/2 sup
w∈B(0,|τ1|1/2)

|ϕ(v)w| = h−1Op(1). (A31)

Next, Olver (1997, ch. 4, pp.109-110) shows that Γ (α, ζ) = O
(
e−ζζα−1

)
as

|ζ| → ∞, uniformly in the sector |arg (ζ)| ≤ π
2
− δ for an arbitrary positive δ. Let

us take α = s+1
2
and ζ = τ (h)n. Lemma A1 (iii) shows that

|τ (h)n| > τ 1n→∞

and

|arg (τ (h)n)| =
∣∣∣∣arctan

Im τ (h)

Re τ (h)

∣∣∣∣ < arctan
τ 2

τ 1

<
π

2
,

15



uniformly over h ∈
(
0, h̄
]
. Therefore,

Γ

(
s+ 1

2
, τ (h)n

)
= O

(
e−τ(h)n (τ (h)n)

s−1
2

)
= Op

(
e−

1
2
τ1n
)

(A32)

for any integer s, uniformly over h ∈
(
0, h̄
]
.

Equality (A32), the definition (A14) of εk,1 (h), and inequality (A31) imply that

εk,1 (h) = h−1Op(e
− 1
2
τ1n), (A33)

where Op(·) is uniform over h ∈
(
0, h̄
]
.

Next, consider wkϕk (v) as a function of w. Since, by definition,

wkϕk (v) = ϕ (v)w −
k−1∑
s=0

asw
s,

it can be interpreted as a remainder in the Taylor expansion of ϕ (v)w.As explained

above, such an expansion is valid in Ω, which includes the ball B
(

0, 2 |τ(h)|1/2
)

by Lemma A1 (iv). By a general formula for remainders in Taylor expansions, for

any w ∈ B
(

0, |τ(h)|1/2
)
,

∣∣wkϕk (v)
∣∣ ≤ |w|k

k!
max

w∈B(0,|τ(h)|1/2)

∣∣∣∣ dkdwk (wϕ (v))

∣∣∣∣ . (A34)

Further, for any w ∈ B
(

0, |τ(h)|1/2
)
, a ball with radius |τ 1|1/2 centered in

w is contained in the ball B
(

0, 2 |τ(h)|1/2
)
⊂ Ω. Therefore, using (A30) and

Cauchy’s estimates for the derivatives of an analytic function (see Theorem 10.26

in Rudin (1987)), we get

max
w∈B(0,|τ(h)|1/2)

∣∣∣∣ dkdwk (wϕ (v))

∣∣∣∣ ≤ k! |τ 1|−k/2 sup
w∈Ω
|wϕ (v)| = h−1Op(1). (A35)
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Combining (A34) and (A35), we have

sup
v∈(0,τ(h)]

|ϕk (v)| = h−1Op(1).

This equality together with (A31) and the fact that, by definition, ϕk (0) = ak

imply that

max
v∈[0,τ(h)]

|ϕk (v)| = h−1Op(1), (A36)

where Op(1) is uniform in h ∈
(
0, h̄
]
.

For εk,2 (h), the substitution of variable v = τ(h)x
n
in the integral (A15) yields

εk,2 (h) = n−(k+1)/2

∫ n

0

e−τ(h)xx
k−1
2 τ(h)

k+1
2 ϕk (v) dx.

Therefore,

∣∣εk,2 (h)n(k+1)/2
∣∣ < max

v∈[0,τ(h)]
|ϕk (v)|

∫ n

0

e−Re τ(h)xx
k−1
2 |τ(h)|

k+1
2 dx (A37)

< max
v∈[0,τ(h)]

|ϕk (v)|
∫ ∞

0

e−
Re τ(h)
|τ(h)| yy

k−1
2 dy.

But by Lemma A1 (iii),

Re τ(h)

|τ (h)| >
Re τ(h)

|Re τ(h)|+ |Im τ (h)| >
τ 1

τ 1 + τ 2

for all h ∈
(
0, h̄
]
. Therefore, the integral in (A37) is bounded uniformly over

h ∈
(
0, h̄
]
. Using (A36), we conclude that

εk,2 (h) = h−1Op

(
n−(k+1)/2

)
. (A38)
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Combining (A9), (A13), (A33), and (A38), we get

∮
[z0,z1]

e−nf(z)g(z)dz = e−nf0

(
k−1∑
s=0

Γ

(
s+ 1

2

)
as

n(s+1)/2
+

Op (1)

hn(k+1)/2

)
, (A39)

where Op(1) is uniform in h ∈
(
0, h̄
]
.

Let us now consider the contribution of K+\[z0, z1], that is, the part of contour

K+ excluding the segment [z0, z1], to the contour integral
∮
K+

e−nf(z)g(z)dz.OnK1,

Re (f(z)− f0) =
cp
2

∫
ln

∣∣∣∣1 + i
Im z

z0(h)− λ

∣∣∣∣ dFp (λ)

is an increasing function of Im (z) . Hence, on K1\[z0, z1],

Re (f (z)− f0) > Re τ ≥ τ 1.

Therefore,

∣∣∣∣∮
K1\[z0,z1]

e−nf(z)g(z)dz

∣∣∣∣ ≤ e−nf0e−nτ1
∮
K1\[z0,z1]

|g(z)dz|

= e−nf0e−nτ1 |3z0(h)|Op (1)

= e−nf0e−nτ1h−1Op(1). (A40)

For the horizontal part K2 of K+, consider first the case when

g(z) = exp
{
−1

2
∆p (z)

}
. We have

∣∣∣∣∣∣
∮
K2

e−nf(z)g(z)dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∮
K2

e
n
2

h
1+h

z

p∏
j=1

(z − λj)−
1
2 dz

∣∣∣∣∣∣ ≤ e−
p
2

ln(3z0(h))

∮
K2

∣∣∣en2 h
1+h

zdz
∣∣∣

=

(
n

2

h

1 + h

)−1

e−
n
2 (cp ln(3z0(h))− h

1+h
z0(h)). (A41)
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But h
1+h

z0(h) ≡ h+ cp, so that

cp ln (3z0 (h))− h

1 + h
z0 (h) > cp ln (z0 (h))− h > 2f0 + cp.

Combining such a lower bound with (A41), we get

∣∣∣∣∣∣
∮
K2

e−nf(z)g(z)dz

∣∣∣∣∣∣ = e−nf0h−1O
(
e−

n
2
cp
)

= e−nf0h−1Op

(
e−

n
4
c
)
, (A42)

where Op

(
e−

n
4
c
)
does not depend on h.

For the case when

g(z) = exp

{
−np− p+ 2

2
ln

(
1− h

1 + h

z

S

)
− n

2

hz

1 + h
− ∆p (z)

2

}
,

we have∣∣∣∣∣∣
∮
K2

e−nf(z)g(z)dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∮
K2

(
1− h

1 + h

z

S

)−np−p+2
2

p∏
j=1

(z − λj)−
1
2 dz

∣∣∣∣∣∣
≤ e−

p
2

ln(3z0(h))

∮
K2

∣∣∣∣∣
(

1− h

1 + h

z

S

)−np−p+2
2

dz

∣∣∣∣∣ .
Further,

∮
K2

∣∣∣∣∣
(

1− h

1 + h

z

S

)−np−p+2
2

dz

∣∣∣∣∣ ≤
∫ z0(h)

−∞

(
1− h

1 + h

x

S

)−np−p+2
2

dx

=
2S

np− p
1 + h

h

(
1− h

1 + h

z0 (h)

S

)−np
2

+ p
2

.
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Hence, we can write

∣∣∣∣∣∣
∮
K2

e−nf(z)g(z)dz

∣∣∣∣∣∣ ≤ 2S

np− p
1 + h

h
e
−np−p

2
ln
(

1− h
1+h

z0(h)
S

)
− p
2

ln(3z0(h))
. (A43)

Now, for any real x such that 0 < x < 1, we have ln (1− x) > − x
1−x . Hence,

−np− p
2

ln

(
1− h

1 + h

z0 (h)

S

)
< (p− cp)

(
S − hz0 (h)

1 + h

)−1
n

2

hz0 (h)

1 + h
.

But

(p− cp)
(
S − hz0 (h)

1 + h

)−1

= 1 +Op

(
n−1
)
.

The Op (n−1) quantity here is uniform over h ∈
(
0, h̄
]
in view of the facts that

S − p = Op (1) by Theorem 1.1 of Bai and Silverstein (2004),

∣∣∣∣hz0 (h)

1 + h

∣∣∣∣ = |h+ cp| ≤
∣∣h̄+ cp

∣∣
for all h ∈

(
0, h̄
]
, and n and p diverge to infinity at the same rate. Therefore,

(A43) implies

∣∣∣∣∣∣
∮
K2

e−nf(z)g(z)dz

∣∣∣∣∣∣ =

(
n

2

h

1 + h

)−1

e−
n
2 (cp ln(3z0(h))− h

1+h
z0(h))Op (1) , (A44)

which, similarly to (A41), implies (A42).

Combining (A39), (A40), and (A42), we get

∮
K+

e−nf(z)g(z)dz = e−nf0

(
k−1∑
s=0

Γ

(
s+ 1

µ

)
as

n(s+1)/2
+

Op (1)

hn(k+1)/2

)
. (A45)
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Finally, note that

∮
K

e−nf(z)g(z)dz =

∮
K+

e−nf(z)g(z)dz −
∮
K̃−

e−nf(z)g(z)dz,

where K̃− is a contour that coincides with K− but has the opposite orientation.

As explained in Olver (1997, pp.121-122), as with odd s in the asymptotic expan-

sion for
∮
K̃−

e−nf(z)g(z)dz coincides with the corresponding as in the asymptotic

expansion for
∮
K+

e−nf(z)g(z)dz. However, as with even s in the two expansions

differ by the sign. Therefore, coeffi cients as with odd s cancel out, but those with

even s double in the difference of the two expansions. Setting k = 2m, we have

∮
K

e−nf(z)g(z)dz = 2e−nf0

(
m−1∑
s=0

Γ

(
s+

1

2

)
a2s

ns+1/2
+

Op (1)

hnm+1/2

)
,

which establishes Lemma 5.

C Proof of Lemma 6

Fix 0 < ε <

(√
c/h̃−

√
h̃

)2

, and consider the event E1 that holds if and only if

(A4) and (A5) hold,

z0(h̃)− bp > ε

and

minh∈[h̃,∞)

(
1 + h

h
S − z0(h̃)

)
> ε.

The fact that, with probability approaching 1, for all h ∈
[
h̃,∞

)
, the integrals in

(2.9) and (2.10) do not change as K is deformed intoK(h̃) can be established along

the same lines as in the proof of Lemma 4 by replacing event E with event E1.

Similarly, an equivalent, for h ≥ h̃, of Lemma 2A, is easily proved along the

same steps. Hence, since Re
(
f(z)− f

(
z0

(
h̃
)))

is an increasing function of Im z
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on K1

(
h̃
)
,

∣∣∣∣∣
∮
K1(h̃)

e−nf(z)g(z)dz

∣∣∣∣∣ ≤ e−nf(z0(h̃))
∮
K1(h̃)

|g(z)dz|

= e−nf(z0(h̃))Op (1) . (A46)

Further, as in (A41) and (A44), we have

∣∣∣∣∣
∮
K2(h̃)

e−nf(z)g(z)dz

∣∣∣∣∣ =

(
n

2

h

1 + h

)−1

e−
n
2 (cp ln(3z0(h̃))− h

1+h
z0(h̃))Op(1)

= e−nf(z0(h̃))Op(1). (A47)

Combining (A46) and (A47), we get

∣∣∣∣∣
∮
K+(h̃)

e−nf(z)g(z)dz

∣∣∣∣∣ = e−nf(z0(h̃))Op(1).

Similarly, ∣∣∣∣∣
∮
K−(h̃)

e−nf(z)g(z)dz

∣∣∣∣∣ = e−nf(z0(h̃))Op(1).

Lemma 6 follows from the latter two equalities.

D Proof of Lemma 11

Consider

I (h) ≡
∫ bp

ap

ln (z0(h)− λ)ψp (λ) dλ,
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where ψp (λ) is defined in (3.2). Making the substitution λ = 1 + cp − 2
√
cp cos θ

and replacing z0(h) by the right-hand side of (3.7), we get

I (h) =
2

π

∫ π

0

ln
(
h+ h−1cp + 2

√
cp cos θ

)
sin2 θ

1 + cp − 2
√
cp cos θ

dθ

=
1

π

∫ 2π

0

ln
∣∣∣√cp/h+

√
heiθ

∣∣∣2 sin2 θ

1 + cp − 2
√
cp cos θ

dθ.

Further, changing the variable of integration from θ to z = eiθ, we get

I (h) =
−1

2πi

∮
|z|=1

ln
[(√

cp/h+
√
hz
)(√

cp/h+
√
hz−1

)]
(z − z−1)

2

2
(√

cp − z
) (
z
√
cp − 1

) dz. (A48)

Representing the logarithm of a product as a sum of logarithms, splitting the

integral into two parts corresponding to the summands, and changing the variable

of integration in the second integral from z to z−1, we get

I(h) =
−1

2πi

∮
|z|=1

ln
(√

cp/h+
√
hz
)

(z − z−1)
2(√

cp − z
) (
z
√
cp − 1

) dz. (A49)

If h <
√
cp, then function ln

(√
cp/h+

√
hz
)
is analytic inside the ball |z| ≤ 1.

Therefore, if cp < 1, the integrand in (A49) has singularities only at zero and
√
cp.

If cp > 1, the singularities are at zero and
√

1/cp. If cp = 1, the only singularity

is at zero. Computing the residues of the integrand at the singularity points and

using Cauchy’s theorem, we get

I (h) =


cp−1

cp
ln (1 + h) + h

cp
+ ln cp

h
if h <

√
cp and cp < 1

1−cp
cp

ln
(

1 + h
cp

)
+ h

cp
+ 1

cp
ln cp

h
if h <

√
cp and cp ≥ 1

. (A50)
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If h >
√
cp, then represent the logarithm in (A48) in the form

ln

[(
z
√
cp/h+

√
h

)(
z−1
√
cp/h+

√
h

)]
,

and proceed as above to get

I (h) =


cp−1

cp
ln (h+ cp) + 1

h
+ 1

cp
lnh if h >

√
cp and cp < 1

1−cp
cp

ln (1 + h) + 1
h

+ lnh if h >
√
cp and cp ≥ 1

. (A51)

Now, it is straightforward to verify that Lemma 11 follows from (A50), (A51),

and from the facts that

f0 = −1

2

(
h

1 + h
z0(h)− cp

∫
ln (z0(h)− λ) dFp (λ)

)
,

that h
1+h

z0(h) = h + cp, and that the Marchenko-Pastur distribution has mass

max
(
0, 1− c−1

p

)
at zero.

E Proof of Lemma 12

Let z0j = lim z0 (hj) as n, p→∞.As follows fromBai and Silverstein (2004, p. 563),

∆p (z0(hj)) =

∮
C

ln (z0 (hj)− z)Mp (z) dz

and

∆p (z0j) =

∮
C

ln (z0j − z)Mp (z) dz,
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where C is a fixed contour of integration encircling the support of the Marchenko-

Pastur distribution, but not z0 (hj) and z0j, and

Mp(z) =

p∑
j=1

(λj − z)−1 − p
∫

(x− z)−1 dFp (x) .

Therefore,

∆p (z0(hj))−∆p (z0j) =

∮
C

ln

(
z0 (hj)− z
z0j − z

)
Mp (z) dz.

Further, as can be shown using arguments similar to those given on p.563 of Bai

and Silverstein (2004),

∮
C

ln

(
z0 (hj)− z
z0j − z

)
Mp (z) dz =

∮
C

ln

(
z0 (hj)− z
z0j − z

)
M̂p (z) dz + op(1),

where
{
M̂p (z) , p = 1, 2, ...

}
is a tight sequence of random continuous functions

on C. On the other hand, as n, p→∞,

ln

(
z0 (hj)− z
z0j − z

)
→ 0

uniformly over C. Hence,

∮
C

ln

(
z0 (hj)− z
z0j − z

)
M̂p (z) dz = op(1),

and thus

∆p (z0(hj))−∆p (z0j) = op(1).

The latter equality implies that the vectors (S − p,∆p (z0(h1)) , ...,∆p (z0(hr))) and

(S − p,∆p (z01) , ...,∆p (z0r)) simultaneously diverge, or converge, in distribution,
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to the same limit.

Now, according to Theorem 1.1 of Bai and Silverstein (2004), (S − p,∆p (z01) , ...,

∆p (z0r)) converges in distribution to a Gaussian vector (η, ξ1, ..., ξr) with means Eη =

0,

Eξj = − 1

2πi

∮
ln (z0j − z)

cm3 (z)

(1 +m (z))3 − cm2 (z) (1 +m (z))
dz, (A52)

covariances

Cov
(
ξj, ξk

)
= − 1

2π2

∮ ∮
ln (z0j − z1) ln (z0k − z2)

(m (z1)−m (z2))2

dm (z1)

dz1

dm (z2)

dz2

dz1dz2,

(A53)

Cov
(
ξj, η

)
= − 1

2π2

∮ ∮
z2 ln (z0j − z1)

(m (z1)−m (z2))2

dm (z1)

dz1

dm (z2)

dz2

dz1dz2, (A54)

and variance

Var (η) = − 1

2π2

∮ ∮
z1z2

(m (z1)−m (z2))2

dm (z1)

dz1

dm (z2)

dz2

dz1dz2, (A55)

where

m (z) = − (1− c) z−1 + cm(z)

with m (z) given by (3.6) where cp is replaced by c. That is,

m (z) =
−z + c− 1 +

√
(z − c− 1)2 − 4c

2z
, (A56)

where the branch of the square root is chosen so that the real and the imaginary

parts of
√

(z − c− 1)2 − 4c have the same signs as the real and the imaginary parts

of z − c − 1, respectively. The contours of integration in (A52)-(A55) are closed,

oriented counterclockwise, enclose zero and the support of the Marchenko-Pastur

distribution with parameter c, and do not enclose z0j and z0k.
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The expressions for Eξj, Cov
(
ξj, ξk

)
, Cov

(
ξj, η

)
and Var (η) can be simplified

along the same steps as in Bai and Silverstein (2004, pp.596-599). Exactly following

the derivation of their formula 5.13, we get

Eξj =
ln ((z0j − a) (z0j − b))

4
− 1

2π

∫ b

a

ln (z0j − x)√
4c− (x− c− 1)2

dx, (A57)

where a = (1−
√
c)

2 and b = (1 +
√
c)

2
.

Making substitution x = 1 + c− 2
√
c cos θ as in the above proof of Lemma 11,

and using similar steps to those used in that proof, we obtain

1

2π

∫ b

a

ln (z0j − x)√
4c− (x− c− 1)2

dx =
1

2π

∫ π

0

ln

∣∣∣∣√c/hj +
√
hje

iθ

∣∣∣∣2 dθ

=
1

2πi

∫
|z|=1

z−1 ln

(√
c/hj +

√
hjz

)
dz = ln

√
c/hj.

Using this in (A57), we get

Eξj =
1

4
ln

((√
c/hj +

√
hj

)2(√
c/hj −

√
hj

)2
)
− ln

√
c/hj

=
1

2
ln
(
1− c−1h2

j

)
.

For the covariance Cov
(
ξj, ξk

)
we use formula 1.16 of Bai and Silverstein

(2004), to get

Cov
(
ξj, ξk

)
= − 1

2π2

∮ ∮
ln (z0j − z (m1)) ln (z0k − z (m2))

(m1 −m2)2 dm1dm2, (A58)

where

z (m) = − 1

m
+

c

1 +m
. (A59)

Note that substituting m (z) as defined in (A56) in the right-hand side of (A59),
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we get z, so (A59) describes a function inverse to m (z) .

Let us split the double integral in (A58) into three parts according to the

decomposition

Cov
(
ξj, ξk

)
=

1

2

[
Var(ξj) + Var (ξk)− Var

(
ξj − ξk

)]
,

where

Var(ξj) = − 1

2π2

∮ ∮
ln (z0j − z (m1)) ln (z0j − z (m2))

(m1 −m2)2 dm1dm2, (A60)

Var(ξk) = − 1

2π2

∮ ∮
ln (z0k − z (m1)) ln (z0k − z (m2))

(m1 −m2)2 dm1dm2, (A61)

and

Var
(
ξj − ξk

)
= − 1

2π2

∮ ∮ ln
(
z0j−z(m1)

z0k−z(m1)

)
ln
(
z0j−z(m2)

z0k−z(m2)

)
(m1 −m2)2 dm1dm2. (A62)

The contours of integration over m1 and m2 in (A60-A62) are obtained from

the contours of integration over z1 and z2 in (A53) by transformationm (z) . Recall

that by assumption the contours over z1 and z2 intersect the real line to the left of

zero and in between the upper boundary of the support of the Marchenko-Pastur

distribution, (1 +
√
c)

2, and min {z0j, z0k} . Therefore, as can be shown using the

definition (A56) of m (z), the m1-contour and m2-contour are clockwise oriented

and intersect the real line in between − (1 +
√
c)
−1 and min {m (z0j) ,m (z0k)} =

−max
{
hj (hj + c)−1 , hk (hk + c)−1} and to the right of zero. In particular, both

contours enclose 0, −hj (hj + c)−1 and −hk (hk + c)−1, but not −1, − (1 + hj)
−1

and − (1 + hk)
−1 .

Without loss of generality, assume that them2-contour encloses them1-contour.
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For fixed m2, we have

∮
ln (z0j − z (m1))

(m1 −m2)2 dm1 =

∮ − d
dm1

z (m1)

(z0j − z (m1)) (m1 −m2)
dm1

= −
∮

1/m2
1 − c/ (m1 + 1)2

(z0j + 1/m1 − c/ (m1 + 1)) (m1 −m2)
dm1, (A63)

where the first equality follows from integration by parts and the fact that

ln (z0j − z (m1)) is a single-valued function along the m1-contour. To see this,

note that

ln (z0j − z (m1)) = ln
z0j

(
m1 + (1 + hj)

−1)
m1 + 1

+ ln

(
m1 +

hj
hj + c

)
− lnm1.

The first of the latter three terms is a single-valued function along the m1-contour

because it does not have singularities inside the contour. The second and the third

terms are not single-valued, but their changes after passing once along the contour

cancel each other.

Now, the integrand in (A63) has first-order poles at 0, −hj (hj + c)−1, m2, −1

and at − (1 + hj)
−1 and no other singularities. As explained above, only the first

two of the above poles are enclosed by the m1-contour. Using Cauchy’s residue

theorem, we get

∮
ln (z0j − z (m1))

(m1 −m2)2 dm1 = 2πi

(
− 1

m2

+
1

m2 + hj (hj + c)−1

)
. (A64)
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Let us denote −hj (hj + c)−1 as θj. Using (A64) and (A60), we get

Var(ξj) =
2πi

2π2

∮
ln (z0j − z (m2))

(
1

m2

− 1

m2 − θj

)
dm2

=
2πi

2π2

∮
ln
(
1− z−1

0j z (m2)
)( 1

m2

− 1

m2 − θj

)
dm2

=
2πi

2π2

∮
ln

(
m2 + (1 + hj)

−1

m2 + 1

)(
1

m2

− 1

m2 − θj

)
dm2

−2πi

2π2

∮
ln

(
m2 − θj
m2

)(
1

m2

− 1

m2 − θj

)
dm2.

By Cauchy’s residue theorem, the first term in the latter expression is equal to

−2 ln
(
1− c−1h2

j

)
. The second term equals zero because the integrand has anti-

derivative −1
2

[
ln
(
m2−θj
m2

)]2

which is a single-valued function along the contour.

Similarly, we can show that

Var(ξk) = −2 ln
(
1− c−1h2

k

)
and that

Var(ξj − ξk) = 2 ln
(1− c−1hjhk)

2(
1− c−1h2

j

)
(1− c−1h2

k)
.

Combining these results, we get

Cov
(
ξj, ξk

)
= − ln

(
1− c−1h2

j

)
− ln

(
1− c−1h2

k

)
− ln

(1− c−1hjhk)
2(

1− c−1h2
j

)
(1− c−1h2

k)

= −2 ln
(
1− c−1hjhk

)
.

For Cov
(
ξj, η

)
and Var (η), an analysis similar to but simpler than that leading

to the above formula for Cov
(
ξj, ξk

)
shows that Cov

(
ξj, η

)
= −2hj and Var (η) =

2c.
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F Proof of Lemma 13

First, note that

CLR =

p∑
j=1

q(λj)− p
∫
q(x)dFp (x) ,

where q(x) = x− lnx− 1. Also, recall that, as shown in the proof of Lemma 12,

∆p (z0(h)) = ∆p (z0) + op(1),

where z0 = lim z0 (h) and

∆p (z0) =

p∑
j=1

s(λj)− p
∫
s(x)dFp (x) ,

with s(x) = ln (z0 − x) . Therefore, in view of Theorem 1.1 of Bai and Silver-

stein (2004), CLR and ∆p (z0(h)) jointly converge in distribution to a Gaussian

vector with covariance

R = − 1

2π2

∮ ∮
s(z1)q(z2)

(m (z1)−m (z2))2

dm (z1)

dz1

dm (z2)

dz2

dz1dz2. (A65)

Here m (z) is as defined in (A56), and the contours of integration are closed, ori-

ented counterclockwise, enclose the support of the Marchenko-Pastur distribution

with parameter c < 1, and do not enclose z0. Further, we will choose such contours

so that the z1-contour encloses 0, but the z2-contour does not.

Using Formula 1.16 of Bai and Silverstein (2004) we can simplify (A65) to get

R = − 1

2π2

∮ ∮
ln (z0 − z (m1)) (z (m2)− ln z (m2)− 1)

(m1 −m2)2 dm1dm2,

where

z (m) = − 1

m
+

c

1 +m
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and the contours of integration over m1 and m2 are obtained from the contours

of integration over z1 and z2 in (A65) by the transformation m (z) . In particular,

m1-contour is oriented clockwise and encloses − h
h+c

and 0 but not −1 and − 1
1+h
,

whereas m2-contour is oriented counterclockwise and encloses 1
c−1

and −1 but not

− h
h+c

and 0.

Using (A64), we can write R = R1 +R2 +R3, where

R1 = − i
π

∮ (
− 1

m2

+
1

m2 + hj (hj + c)−1

)
z (m2) dm2,

R2 =
i

π

∮ (
− 1

m2

+
1

m2 + hj (hj + c)−1

)
ln z (m2) dm2, and

R3 =
i

π

∮ (
− 1

m2

+
1

m2 + hj (hj + c)−1

)
dm2.

Since − 1
m2

+ 1
m2+hj(hj+c)

−1 is analytic in the area enclosed by the m2-contour,

R3 = 0. Further, using Cauchy’s theorem and the fact that

z (m2) = − 1

m2

+
c

1 +m2

,

we get R1 = −2h. Finally, integrating R2 by parts, and using the fact that ln z (m2)

is a single-valued function on the m2-contour, we get

R2 = − i
π

∮ 1
m2
2
− c

(1+m2)2

− 1
m2

+ c
m2+1

(
− lnm2 + ln

(
m2 + hj (hj + c)−1)) dm2.

The integrand in the above integral has only two singularities in the area enclosed

by the m2-contour: a pole at 1
c−1

and a pole at −1. Therefore, by Cauchy’s residue

theorem, we get R2 = 2 ln (1 + h) . To summarize, R = R1 + R2 + R3 = −2h +

2 ln (1 + h), which establishes Lemma 13.
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